#### Welcome to FB-Deep



The FB-Deep computer program is a Windows based program used to estimate the static axial capacity of drilled shafts and driven piles. The drilled shaft methodology is based upon Federal Highway Administration reports. Driven pile methodology utilizes two types of analyses: SPT and CPT. SPT methodology is based on empirical correlations between cone penetrometer tests and standard penetration tests for typical Florida soil types. Unit end bearing resistance and unit skin friction resistance versus SPT N values are given in the FDOT research bulletin RB-121, for the different soil types. Driven pile capacity calculated using CPT data can be determined by three separate methods. The first method is the Sch-

mertmann method proposed by Schmertmann in 1978 (AASHTO LRFD Bridge Design Manual). The second method is the LCPC method proposed by Bustamante and Gianeselli for the French Highway Department in 1982. The third method is the UF method proposed by Bloomquist, McVay and Hu for the FDOT in 2007.

Copyright © 2020 Bridge Software Institute.

### Disclaimer

"The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Florida Department of Transportation or the U.S. Department of Transportation."

No Warranty, expressed or implied, is made by the Florida Department of Transportation as to the accuracy and the functioning of the program text or the results it produces, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by Florida Department of Transportation in any connection therewith.

Prepared in cooperation with the State of Florida Department of Transportation and the U.S. Department of Transportation.

#### Introduction

The FB-Deep computer program is a Windows based program used to estimate the static axial capacity of drilled shafts and driven piles.

The drilled shaft methodology is based upon Federal Highway Administration reports: (a) Reese, L. and O'Neill, M. (1988) "Drilled Shafts: Construction Procedure and Design Methods", and (b) O'Neill, M.W. et al. (1996) "Load Transfer for Drilled Shafts in Intermediate Geomaterials". The former presents methods for estimating drilled shaft capacity in clays or sands, and provides settlement estimates. The latter addresses intermediate geomaterials, soft rock, qu between 0.5 and 5.0 Mpa (1.7 to 17 tsf) and SPT blow counts of 50 - 100; and provides settlement analyses. Load transfer for rock socketed shafts in Florida limestone is based upon the methodology described in; (a) FDOT Final Report " An Evaluation of Design Methods for Drilled Shafts)" (1990), which is also found (b) McVay, M.C. et al. (1992).

Driven pile methodology utilizes two types of analyses: SPT and CPT. SPT methodology is based on empirical correlations between cone penetrometer tests and standard penetration tests for typical Florida soil types. Unit end bearing resistance and unit skin friction resistance versus SPT N values are given in the FDOT research bulletin RB-121, for the different soil types.

Driven pile capacity calculated using CPT data can be determined by three separate methods. The first method is the Schmertmann method proposed by Schmertmann in 1978 (AASHTO LRFD Bridge Design Manual). The second method is the LCPC method proposed by Bustamante and Gianeselli for the French Highway Department in 1982. The third method is the UF method proposed by Bloomquist, McVay and Hu for the Florida Department of Transportation in 2007.

FB-Deep replaces earlier versions of ShaftSPT97. ShaftSPT97 replaced SHAFTUF and SHAFT93 and SPT97.

# **1 Drilled Shafts**

- 1. Method of Analysis
- 2. Water Table Elevation
- 3. Design for Clay
- 4. Design for Sand
- 5. Design for Rock
- 6. Layered Soils
- 7. Examples

## 1.1 Shaft: Method of Analysis

The axial capacity of drilled shafts can be calculated as:

#### Equation: 1.1.a

 $Q_t = Q_s + Q_b$ 

where:  $Q_t$  = Ultimate shaft capacity  $Q_s$  = capacity in skin friction  $Q_b$  = Capacity in end bearing

The computations of side resistance (skin friction) and end bearing are presented in separate sections for clay, sand, and intermediate geomaterial (soft rock). Settlement calculations are also presented. These three material types (clay, sand, and soft rock) are identified as follows to be compatible with FDOT's SPT97 program. There is NO skin friction contribution along the length of the casing.

# **1.2 Water Table Elevation**

| -Water Table Elevation<br>(ft) |
|--------------------------------|
| 0.000                          |
|                                |

The water table elevation is relative to mean sea level. For example, if the inputted ground surface elevation is 50 feet, and the inputted water table elevation is –10 feet, this would mean the water table elevation is 60 feet below the ground surface.

**1.3 Design for Clay** 

- 1. Shear Transfer
- 2. End Bearing
- 3. Short-Term Settlement

# 1.3.1 Shaft: Clay Shear Transfer



Figure: 1.3.a Portions of Drilled Shaft Non-Contributory in Friction

| Location Along Drilled Shaft    | Value of $\alpha$ | Maximum Value of fsu (tsf) |
|---------------------------------|-------------------|----------------------------|
| From ground surface to depth of | 0.0               |                            |
| 5 feet (1.52 m)                 |                   |                            |
| From ground surface to length   | 0.0               |                            |
| ofcasing                        |                   |                            |
| Bottom 1 diameter of shaft or 1 | 0.0               |                            |
| stem diameter above top of bell |                   |                            |
| All other points along drilled  | 0.55              | 2.75 tsf                   |
| shaft sides                     |                   | (275 kPa)                  |

The load transfer in side resistance for drilled shafts in clay employs the Alpha ( $\alpha$ ) method. That is, the undrained shear strength C<sub>u</sub> of clay is found from appropriate soil tests or correlations with insitu tests and the following equation (Equation: 1.3.a) used to compute the ultimate value if unit load transfer at the depth z below the ground surface.

 $f_{su} = \alpha C_u$ Equation: 1.3.a

where

f<sub>su</sub> = ultimate unit load transfer in side resistance at depth z

 $\alpha$  = empirical factor that varies with depth, (see above table and Figure: 1.3.a) and

 $C_u$  = undrained shear strength at depth z,

The total load Q<sub>s</sub> in side resistance is now computed as:

$$Q_{s} = \int_{L_{1}}^{L_{2}} f_{su} dA$$

### Equation: 1.3.b

where

dA = differential area of the perimeter along the side over a specific depth, and  $L_1$  and  $L_2$  = penetration of drilled shaft below ground surface between two layers.

Figure: 1.3.a illustrates the zones where  $\alpha$  is assumed to be zero. The setting of  $\alpha = 0$  for a distance of 1 diameter above the base is from the work of Ellison et al. (1971), who showed that the downward movement of the base of the shaft can result in the development of a tensile crack in the soil near the base. Consequently, the lateral stress at the base will be reduced causing a reduction in load transfer in skin friction for this zone. In cases where a clay layer is present above the base, the program takes the arithmetic average of those C<sub>u</sub> values between the top and the bottom of the clay layer. For a belled shaft the C<sub>u</sub> are averaged between the top of the clay layer and to one shaft diameter above the top of the bell (if the bottom of a clay layer is below the depth of one shaft diameter above the top of the bell). However, if the top of the clay layer falls within 5 ft (1.52m) below the ground surface, the C<sub>u</sub> average starts from the bottom of 5 ft (1.52m). The user must provide at least one C<sub>u</sub> value for each clay layer.

# 1.3.2 Shaft: Clay End Bearing

The end bearing resistance for drilled shafts in clay is derived from the work of Skempton (1951) as follows:

 $q_b = N_c C_{u'} q_b < 40 \text{ tsf} (4000 \text{ kPa})$ Equation: 1.3.c

where:

$$\begin{split} q_b &= \text{unit end bearing for drilled shafts in clay} \\ N_c &= 6.0[1 + 0.2(L/B)] \ N_c < 9 \\ C_u &= \text{average undrained shear strength of clay for 3.0 B below the tip} \\ L &= \text{total embedment length of shaft} \\ B &= \text{diameter of shaft base.} \end{split}$$

The limiting value of q<sub>b</sub> shown in Equation 1.3c is merely the largest value of end bearing that has been measured for clays and is not a theoretical limit (Engling and Reese, 1974).

FB-Deep interpolates or extrapolates values of Cu at depths of one base diameter of the shaft below the base. Interpolation and extrapolation depend on the depth of Cu values.

For the calculation of an average Cu value, the program takes an weighted average of all the Cu values present in above described depth range. An example with hand calculations is shown in Appendix A.

In the case where the shaft base is at the top of a clay layer, FB-Deep takes an area average of Cu values between the base and three diameter widths below the base. In those rare instances where the clay at the base is soft, the value of  $C_u$  may be reduced by one-third to account for local (high strain) bearing failure. Furthermore, when the base of the shaft has a diameter greater than 75 inches (1.9 m) consideration should be given to reducing  $q_b$  because the settlement required to obtain the ultimate value of  $q_b$  will be so great that application of safety factors in the usual range of 2 or 3 may result in excessive short term settlement. It is therefore recommended that for drilled shafts in stiff to hard clay, with B exceeding 75 inches (1.9 m), that the following expressions be used to reduce  $q_b$  to  $q_{br}$ , where  $q_{br}$  is the reduced ultimate end bearing stress, to which appropriate safety factors are applied.

 $q_{br} = F_r q_b$ Equation: 1.3.d

where:  $F_r = 2.5/[aB (inches) + 2.5 b] F_r < 1.0$ in which  $a = 0.0071 + 0.0021 (L/B_b)$ , a < 0.015 $b = 0.45 (C_{ub})^{0.5}$ , 0.5 < b < 1.5 and  $C_{ub}$  in ksf

These expressions are based upon load tests of large under-reamed drilled shafts in very stiff clay (O'Neill and Sheikh, 1985) and restrict  $q_{br}$  to be the net bearing stress at a base settlement of 2.5 inches (6.35 cm). When half or more of the design load is carried in end bearing and a global factor of safety applied, the global safety factor should not be less than 2.5, unless site specific load tests deem otherwise.

## 1.3.3 Shaft: Clay Short-Term Settlement

The reference curves are presented in Figure: 1.3.b. The marks represent the values proposed by Reese and O'Neill [FHWA (1988)] and the solid lines are the adopted curves. It should be observed that a considerable scatter is present around these curves. If the short-term settlements or differential settlements appear to be too great the applied loads can be adjusted accordingly. Normally, if the procedures for establishing ultimate loads are followed, short-term settlements should be restricted to less than one inch (2.54 cm.) when appropriate safety factors are applied.

Side friction mobilization

 $\begin{array}{ll} f_{s}/f_{smax} = 0.593157^{*}\text{R}/0.12 & \mbox{ for } R \leq 0.12 \\ f_{s}/f_{smax} = R/(0.095155 + 0.892937^{*}\text{R}) & \mbox{ for } R \leq 0.74 \\ f_{s}/f_{smax} = 0.978929 - 0.115817^{*}(\text{R}-0.74) & \mbox{ for } R \leq 2.0 \\ f_{s}/f_{smax} = 0.833 & \mbox{ for } R > 2.0 \end{array}$ 

where R = 100 \* Settlement / D For end bearing mobilization the trendline is given as:  $q_b/q_{bmax} = 1.1823E-4*R^5-3.7091E-3*R^4+4.4944E-2*R^3-0.26537*R^2+0.78436*R$  for R  $\leq 6.5$  $q_b/q_{bmax} = 0.98$  for R > 6.5



Figure: 1.3.b Trend lines for side friction and end bearing in clay

# 1.4 Design for Sand

- 1. Side Shear Resistance
- 2. End Bearing
- 3. Immediate Settlement

### 1.4.1 Sand: Side Shear Resistance

Side Shear resistance - The unit side resistance, as the drilled shaft is pushed downward is equal to the normal effective stress times the tangent on the interface friction angle. The normal stress at the interface of the drilled shaft and soil will be relatively low when the excavation is completed. The fluid stress from the fresh concrete will impose a normal stress that is dependent on the characteristics of the concrete. Experiments have shown that concrete with a moderate slump (up to 6 inches, 15 cm.) acts hydrostatically over a depth of 10 to 15 ft. (3 to 4.5 m.) and there is a leveling off in the lateral stress at greater depths, probably due to arching (Bernal and Reese, 1983). Concrete with a high slump (about 9 inches, 23 cm.) acts hydrostatically to a depth of 32 ft. (10 m.). Thus, construction procedures and the concrete characteristics will probably have a strong influence on the magnitude of the lateral stress at the soil-concrete interface. Furthermore, the friction angle of the soil-concrete interface will also be affected by construction details. Consequently, a b method for calculating the unit side shear transfer is use with the following rationale:

$$f_{sz} = K \sigma_z \tan \phi_c$$

#### Equation: 1.4.a

$$Q_s = \int_0^L K \,\sigma_z \,\tan\phi_c \,\,dA$$

#### Equation: 1.4.b

where

 $f_{sz}$  = ultimate unit side shear resistance in sand at depth z,

K = a parameter that combines the lateral pressure coefficient

 $\sigma_z$  = vertical effective stress at depth z

 $\phi_c$  = interface friction angle for soil-concrete

L = depth of embedment for drilled shaft in sand

dA = differential area of perimeter along sides of drilled shaft

Equation: 1.4.a and Equation: 1.4.b can be used in computations, but simpler expressions can be developed by combining the terms for K and tan  $\varphi_c$  as  $\beta$ ; resulting in:

$$f_{sz} = \beta \sigma_z$$

Equation: 1.4.c

$$Q_s = \int \beta \, \sigma_z \, dA$$

Equation: 1.4.d

 $\beta = 1.5 - 0.135\sqrt{z}$ 1.2 >  $\beta$  > 0.25 Equation: 1.4.e

where

z = depth below ground surface, ft.

The factor  $\beta$  in Equation: 1.4.d is independent of  $\varphi$  (or N<sub>SPT</sub>) because drilling plus stress relief produces high shearing strains in the sand at the borehole interface, and the friction angle  $\varphi$  is forced toward some common critical state value. Thus, the parameter  $\beta$  varies principally with the coefficient of lateral pressure K and experimental studies have shown that this coefficient both for soil and fresh concrete exhibits some decrease with depth. In sand layers with blowcounts of less than 15, an adjustment is made by dividing the blowcount by 15, and multiplying this value by  $\beta$ .

The limiting value of side resistance in Equation: 1.4.e is again not a theoretical limit, but rather is merely the largest value that has been measured (Owens and Reese, 1982). Higher values can be used if justified via a load test.

## 1.4.2 Sand: End Bearing

End Bearing - Because of stress relief when an excavation is drilled into sand, there is a tendency for the sand to loosen slightly at the bottom of the excavation. Also there appears to be some densification of the sand beneath the base of the drilled shaft as settlement occurs. The load-settlement curves that have been obtained by experiment for the base of drilled shafts are consistent with the above concepts. the load continued to increase for some tests to a settlement of more than 15 percent of the base diameter. Such a large settlement could not be tolerated for most structures; therefore, it was decided to limit the values of end bearing for drilled shafts in granular soils to that which would occur at a downward movement of 5 percent of the base diameter.

The values of  $q_b$  are tabulated as a function of N<sub>SPT</sub> (uncorrected field values) in Table 3. However, these values may have to be reduced for large diameter shafts [D> 50 in. (1.3m)], as shown by Equation: 1.4.f.

$$q_{br} = 50 * \left(\frac{q_b}{B_b}\right);$$
  
B<sub>b</sub> in inches

or

$$q_{br} = 1.3 * \left(\frac{q_b}{B_b}\right);$$
  
B<sub>b</sub> in meters

Equation: 1.4.f

#### **Recommend Unit End Bearing Values for Cohesionless Soils**

| N <sub>spt</sub> Values (Blowcount) | Value of q <sub>b</sub> (tsf)                  |
|-------------------------------------|------------------------------------------------|
| 0 to 50                             | (0.60 N <sub>spt</sub> )[60 N <sub>spt</sub> ] |
| Above 50 is treated as 50           | (0.60 N <sub>spt</sub> )[60 N <sub>spt</sub> ] |

In the case where the shaft base is in sand, FB-Deep uses the basic assumption that the soil 1.5B above and 2B below the shaft base contributes to the end bearing capacity. This assumption differs from O'Neill (1988) in which a single N value at the base characterizes the tip resistance. A weighted average in this 1.5B - 2B range is obtained via Equation: 1.4.g.

$$N_{spt} = \frac{\sum N_k L_k}{\sum L_k}$$

### Equation: 1.4.g

FB-Deep needs at least one value of SPT for each sand layer. It then calculates an area average of SPT values between the depth range of 1.5 shaft diameters above the base and 2.0 base diameters below the base, if no other layer except a sand layer is present in this depth range. If any other soil except sand is present in this range, then it calculates area average of SPT values between top of other layer (in other layer is present below the base), and bottom of other layer (if other layer is present above the base). If a sand layer is present above the base while the shaft is not tipped in sand, FB-Deep asks for at least one value of SPT for each sand layer. However, SPT values are not required to calculate skin friction, but in case of editing the shaft data, this information may be required.

## 1.4.3 Sand: Immediate Settlement

Immediate Settlements - The immediate settlements are computed using non-linear t-z and Q-z springs, with the shape presented in Figure: 1.4.a. The equations are provided but is should be referred that there is a considerable scatter around these trend lines.

Side friction mobilization  $f_s/f_{smax} = -2.16*R^4 + 6.34*R^3 - 7.36*R^2 + 4.15*R$  for  $R \le 0.908333$  $f_s/f_{smax} = 0.978112$  for R > 0.908333

where R = 100 \* Settlement / D End bearing mobilization  $q_b/q_{bmax} = -0.0001079* R^4 + 0.0035584* R^3 - 0.045115* R^2 + 0.34861*R$ 



Figure: 1.4.a Trend lines for side friction and end bearing in sand

# **1.5 Design for Rock**

- 1. Side Shear Resistance
- 2. End Bearing
- 3. Short-Term Settlement

### 1.5.1 Rock: Side Shear Resistance

Several equations have been suggested for estimating the ultimate side friction ( $f_{su}$ ) for drilled shafts in rock. (McVay et al. 1992) and are typically based upon unconfined compression strengths,  $q_{u}$ , (a values) or a

combination of unconfined and split tensile strengths (  $0.5\sqrt{q_u}\sqrt{q_t}$  ). These correlations listed below can be entered into FB-Deep as

(Note: 1 tsf = 95.8 kPa):

$$f_{su} = A q_u^{B}$$

#### Equation: 1.5.a

 $f_{su} = 1.842 q_u^{0.367}$ 1. Williams, et.al. (1980):  $f_{su}(tsf) = 1.45\sqrt{q_u}$  for clean sockets, and 2. Rowe and Armitage  $f_{su}(tsf) = 1.94\sqrt{q_u}$  for rough sockets; (1987): 3. Horvath and Kenney  $f_{su}(\text{tsf}) = 0.67\sqrt{q_u}$ (1979):  $f_{su}(\text{tsf}) = 0.63\sqrt{q_u}$ 4. Carter and Kulhawy (1988): 5. Reynolds and Kaderabek  $f_{su}(tsf) = 0.3(q_u)$ (1980): 6. Gupton and Logan (1984):  $f_{su}(tsf) = 0.2(q_u)$ .  $f_{su}(tsf) = 0.15(q_u)$ 7. Reese and O'Neill (1988):  $f_{su} = 0.01N(\text{tsf})$ 8. Crapps (1986):  $f_{su} = -5.54 + 0.41N(\text{tsf})$ 9. CIRIA (Hobbs and **N value** 10 15 20 25 30 > 30 Healy,1979)

|        |                    | f <sub>su</sub> (tsf) | 0.36 ( | 0.77 1. <sup>-</sup> | 10 1.80  | 2.60  | 2.60 |
|--------|--------------------|-----------------------|--------|----------------------|----------|-------|------|
| 10 M   | (1099)             | N range               | 10-20  | 20-50                | 50-50/3' | ' >5( | 0/3" |
| 10. 10 | iciviariari (1900) | f <sub>su</sub> (tsf) | 1.5    | 2.5                  | 3.8      | 5     |      |

An examination of these methods reveals that in the case of #5, #6 and #7, skin friction is a simple constant times  $q_{\mu}$ , whereas #1, #2, #3, and #4 use a power curve relationship.

The value of  $f_{su}$  is modified by the Rock Recovery percentage. The Rock Recovery percentage is inputted in the Boring Log as a value between 0.0 and 1.0. Note that for input files created in FB-Deep version 1.18 and previous, the value of  $f_{su}$  is modified by RQD, not Rock Recovery. To force an old input file (one that was created on FB-Deep version 1.18 or before) to use Rock Recovery instead of RQD, simply open the old input file in FB-Deep version 1.19, and resave it.

When entering values for socket roughness, 0 = smooth socket, and 1 = rough socket. If any rock layers in the boring log have a smooth designation, the  $Aq_u^B$  method will automatically become selected and the William's and McVay's methods will become disabled. The default values of 1.0 and 0.07 will then be assigned to A and B, respectively. (Note that for input files created in FB-Deep version 1.18 and previous, you can still use any of the three Rock Side Friction methods, even if a smooth socket is present. However, once you save the old input file on version 1.19, you will be forced to used the  $Aq_u^B$  method if any smooth sockets are present.

| ring Date:              | Boring Identification Add<br>Boring Date: Gr |                             | Additional Options                   |                  |                                      | Cu Calculation Method | Srength R                                                                                               | Srength Reduction Factor |        |       |           |          |
|-------------------------|----------------------------------------------|-----------------------------|--------------------------------------|------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------|--------------------------|--------|-------|-----------|----------|
|                         |                                              |                             | Ground Surface Elevation: 4.000 (ft) |                  | Oirect                               |                       | Side frict                                                                                              | Side friction (= < 1.0): |        |       |           |          |
| ing Number:             |                                              |                             | Blow count is                        | obtained using a | ned using automatic hammer O CPT End |                       | End bear                                                                                                | ring (= < 1.0): 1.000    |        |       |           |          |
| tion Number:            |                                              |                             | Correction Factor                    | ; 1              | .000                                 |                       | Rock Side Friction Calculation Method       William's     McVay's       A:     1.000       B:     0.070 |                          |        |       |           |          |
| set:                    |                                              | ?                           |                                      |                  |                                      |                       |                                                                                                         |                          |        |       |           |          |
| ng Data<br>Insert Laver | Del                                          | ete Laver Import/Expor      | Default o                            | ih Em            |                                      |                       |                                                                                                         |                          |        |       |           |          |
| lo. Depth               | Soil                                         | Soil                        | N. Blows                             | Unit Weight      | Cu-DIR                               | qu                    | qt                                                                                                      | qb                       | Em     | RQD   | Socket    | Rock     |
| (ft)                    | Туре                                         | Description                 | (blow/ft)                            | (pcf)            | (tsf)                                | (tsf)                 | (tsf)                                                                                                   | (tsf)                    | (ksi)  |       | Roughness | Recovery |
| 1 0.000                 | 3                                            | Clean Sand                  | 0.000                                | 100.000          |                                      |                       |                                                                                                         |                          |        |       |           |          |
| 2 10.000                | 3                                            | Clean Sand                  | 10.000                               | 100.000          |                                      |                       |                                                                                                         |                          |        |       |           |          |
| 3 20.000                | 3                                            | Clean Sand                  | 10.000                               | 100.000          |                                      |                       |                                                                                                         |                          |        |       |           |          |
| 4 20.100                | 1                                            | Plastic Clay                |                                      | 100.000          | 1.900                                |                       |                                                                                                         |                          |        |       |           |          |
| 5 40.000                | 1                                            | Plastic Clay                |                                      | 100.000          | 1.900                                |                       |                                                                                                         |                          |        |       |           |          |
| 6 40.100                | 4                                            | Limestone, very shelly sand |                                      | 100.000          |                                      | 20.000                | 2.000                                                                                                   | 10.000                   | 31.944 | 1.000 | 0         | 1.000    |
| 7 75.000                | 4                                            | Limestone, very shelly sand |                                      | 100.000          |                                      | 20.000                | 2.000                                                                                                   | 10.000                   | 31.944 | 1.000 | 0         | 1.000    |

Figure: 1.5.a Boring Log Dialog

# 1.5.2 Rock: End Bearing

The ultimate end bearing resistance in rock can be calculated as:

 $Q_b = q_{bu} A_b$ Equation: 1.5.b

where:

 $Q_b$  = ultimate end bearing  $q_{bu}$  = unit end bearing capacity, and  $A_b$  = shaft base area  $q_{bu}$  is user defined.

## 1.5.3 Rock: Short-Term Settlement

The short-term settlements in rock are estimated using the direct method of O'Neill, et al. (1996) (FHWA report: Load Transfer for Drilled Shafts in Intermediate Geomaterials) for rough sockets [IGM\_Type = 1.0] or smooth [IGM\_Type <> 1.0].

Step-by-step procedure for settlement capacity computation of Drilled Shaft IGM:

1. Find the total socketed length along the pile (L).  $L = \Sigma L_k$ 

where, k is rock layer number,  $\mathsf{L}_k$  is k rock layer thickness

2. Find the average  $E_m$  and  $f_{su}$  along the side of the rock socket.

$$E_{m_a avg} = \frac{\sum E_{mk} L_k}{\sum L_k} \quad \text{where} \quad E_m = 115 \ q_u$$

$$f_{su_avg} = \frac{\sum f_{su}L_k}{\sum L_k}$$
 where  $f_{su}$  = side friction from Equation: 1.5.a.

3. Find n

$$n = \frac{\sigma_n}{q_n}$$

#### For "rough" sockets;

where,  $\sigma_n$  = normal stress of concrete =  $\gamma_c Z_c M$ 

 $\gamma_c$  is the unit weight of the concrete and

 $Z_c$  is the distance from the top of the completed column of concrete to the point in the borehole at which  $\sigma_n$  is desired (usually the middle of the socket).



Table 4 Values of M

| Socket Depth (m) | Slump (mm) |      |     |  |  |  |  |  |
|------------------|------------|------|-----|--|--|--|--|--|
|                  | 125        | 175  | 225 |  |  |  |  |  |
| 4                | 0.50       | 0.95 | 1.0 |  |  |  |  |  |
| 8                | 0.45       | 0.75 | 1.0 |  |  |  |  |  |
| 12               | 0.35       | 0.65 | 0.9 |  |  |  |  |  |

if a water table is present, then  $\sigma_n = M \cdot [\gamma_c Z_w + (\gamma_c - \gamma_w) \cdot (Z_c - Z_w)]$ , where  $Z_w = \text{depth to water table}$ .

### For "smooth" sockets,

n is estimated (See Figure: 1.5.b).



Figure: 1.5.b: N Factors for Smooth Sockets

$$n_{avg} = \frac{\sum n_k L_k}{\sum L_k}$$

Average n is calculated as

Where, k is rock layer number,  $\mathsf{L}_\mathsf{k}$  is k layer thickness

4. Calculate  $\mathbf{\Omega}$ 

$$\Omega = 1.14 \left(\frac{L}{D}\right)^{0.5} - 0.05 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10}\left(\frac{E_c}{E_{m_avg}}\right) - 0.44$$

where, L is the total socket length,  ${\rm E_c}$  is user defined concrete elastic modulus, and  $\frac{L}{D} \ge 2$ 

5. Calculate **F** 

$$\Gamma = 0.37 \left(\frac{L}{D}\right)^{0.5} - 0.15 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10}\left(\frac{E_c}{E_{m_avg}}\right) + 0.13$$

1. Calculate 
$$\Theta_f$$
 and  $K_f$ 

$$\Theta_f = \frac{E_{m\_avg}\Omega}{\pi L\Gamma f_{su\_avg}} w_t$$

$$K_{f} = n_{avg} + \frac{\left(\Theta_{f} - n_{avg}\right)\left(1 - n_{avg}\right)}{\Theta_{f} - 2n_{avg} + 1} < 1$$

where,  $w_t$  = Settlement at top of rock socket

### 2. Calculate the side shear load transfer - deformation as

$$Q_{s} = \pi DL\Theta_{f} f_{su_{avg}} \qquad \Theta_{f} < n_{avg}$$
$$Q_{s} = \pi DLK_{f} f_{su_{avg}} \qquad \Theta_{f} > n_{avg}$$

$$K_f = 1.0$$
 when,  $K_f < n_{avg}$ 

3. For end bearing short-term settlements in rock sockets, the O'Neill et al. (1996) procedure follows as:

 $_{\mathsf{Find}} \mathcal{Q}_{\flat}$ 

$$Q_b = \frac{\pi D^2}{4} q_b$$

where  $q_b = \Lambda W_t^{0.67}$  , and

$$\Lambda = 0.0134 E_{m\_tip} \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}+1\right)} \left\{ \frac{200 \left[\left(\frac{L}{D}\right)^{0.5} - \Omega\right] \left[1 + \frac{L}{D}\right]}{\pi L \Gamma} \right\}^{0.67}$$

4. The total settlement (  $Q_t$  ) for a rock socket would be the sum of  $Q_s + Q_b$  .

# Example:



1. Find the total socketed length along the pile (L). L = 6.1 m

2. Find the average  $E_m$  and  $f_{su}$  along the side of the rock socket.

$$E_{m\_avg} = \frac{\sum E_{mk} L_k}{\sum L_k} \text{ where } E_m = 115 \ q_u$$

 $E_{m_{avg}} = 195500 \text{ kPa}$ 

$$f_{su\_avg} = \frac{\sum f_{su}L_k}{\sum L_k} \text{ where, } f_{su} = A \bullet q_u^B \text{ (selecting A = 0.4 and B = 1)}$$
$$f_{su\_avg} = 680 \text{ kPa}$$

3. Find average n

IGM Layer 1, for "rough" sockets;

$$n = \frac{\sigma_n}{q_u}$$

where,  $\sigma_n = \gamma_c Z_c M$ 

 $\gamma_c$  = 20.4 kN/m<sup>3</sup>, M = 0.92 (for  $Z_c$  = 4.575 m and Slump = 175 mm)

 $\sigma_n$  = 85.86 kN/m<sup>2</sup>

 $n(\sigma_{n'} q_u) = 0.036$ 

IGM Layer 2, for "smooth" sockets, n is estimated using Figure: 1.5.b).

 $\sigma_n = \gamma_c Z_c M$ 

 $\gamma_c$  = 20.4 kN/m<sup>3</sup>, M = 0.769 (for  $Z_c$  = 7.625 m and Slump = 175 mm)

 $\sigma_n$  = 119.6 kN/m<sup>2</sup>

$$n(E_m / \sigma_n q_u / \sigma_p) = 0.456$$

Average n is calculated as  $n_{avg} = 0.246$ 

4. Calculate  $\Omega$ 

$$\Omega = 1.14 \left(\frac{L}{D}\right)^{0.5} - 0.05 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10}\left(\frac{E_c}{E_{m_avg}}\right) - 0.44$$

5. Calculate Г

$$\Gamma = 0.37 \left(\frac{L}{D}\right)^{0.5} - 0.15 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10}\left(\frac{E_c}{E_{m_avg}}\right) + 0.13$$

 $\Gamma = 0.602$ 

6. Calculate  $\Theta_{f}$ 

$$\Theta_f = \frac{E_{m\_avg}\Omega}{\pi L\Gamma f_{su\_avg}} w_t$$

For 2mm settlement at top of rock socket (wt = 0.002m)  $\Theta_{\rm f}$  = 0.146

7. Calculate the side shear load capacity – settlement as

$$Q_{s} = \pi DL\Theta_{f} f_{su_{avg}} \qquad \Theta_{f} < n_{avg}$$
$$Q_{s} = \pi DLK_{f} f_{su_{avg}} \qquad \Theta_{f} > n_{avg}$$

For 
$$\Theta_{f} < n_{avg}$$

 $Q_{s} = 1160 \text{ kN}$ 

8. For end bearing short-term settlements (Q<sub>b</sub>) in rock sockets, the O'Neill et al. (1996) procedure follows as:

$$Q_b = \frac{\pi D^2}{4} q_b$$

where  $q_b = \Lambda W_t^{0.67}$  , and

$$\Lambda = 0.0134 E_{m_{-}tip} \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}+1\right)} \left\{ \frac{200 \left[\left(\frac{L}{D}\right)^{0.5} - \Omega\right] \left[1 + \frac{L}{D}\right]}{\pi L \Gamma} \right\}^{0.67}$$

 $\Lambda=71054 \text{ kN/m}^2.$ 

Q<sub>b</sub> = 323 kN

9. The total settlement ( $Q_t$ ) for a rock socket would be the sum of ( $Q_s + Q_b$ ).

 $Q_t = 1160 + 323 = 1823 \text{ kN}$  (for 2mm settlement)

1.6 Shaft: Layered Soils

In the case of alternating layers of clay, sand, or rock, the side resistance is calculated by summing the incremental resistances for each layer. Obviously, the end bearing depends upon the layer in which the base is tipped.

# **1.7 Examples**

- 1. Example 1
- 2. Example 2
- 3. Example 3
- 4. Example 4
- 5. Example 5
- 6. Example 6

# 1.7.1 Example 1: Multi Layer Clay with Casing



1- Undrained Shear Strength calculation from CPT results

$$Cu = \frac{q_c - \sigma_0}{15}$$

 $\sigma_o$ : average stress;  $q_c$ : tip cone resistance

Clay Layer #1:

$$Cu = \frac{(16 \cdot 2000) - (10 \cdot 100)}{15} = 2,066.67 \ psf(1.0333 \ tsf)$$

Clay Layer # 2 :  $Cu = \frac{(30 \cdot 2000) - (30 \cdot 100)}{15} = 3,800 \ psf(1.90 \ tsf)$  2- Skin Friction:

Skin friction coefficient

 $f_{su} = \alpha \cdot C u$ 

Layer #1:

$$f_{su} = 0.55 \cdot (1.0333 \, tsf) = 0.568 \, tsf$$

Layer#2:

35

40

(ft)



Skin Friction

3- End Bearing:

$$Q_{b} = q_{b} \left(\frac{\pi B^{2}}{4}\right) \qquad q_{b} = N_{c} \cdot \overline{C_{u}}$$

$$N_{c} = 6.0 \cdot \left[1 + 0.2 \left(\frac{40'}{3'}\right)\right] = 22 > 9 \quad (use \ 9) \quad \left[Skempton \ (1951)\right]$$

$$\overline{C_{u}} = \frac{q_{c} - \overline{\sigma_{0}}}{15}$$

Average undrained shear strength 1.5B above the tip

$$C_{u} = \frac{(30tsf \cdot 2000) - (100\,pcf) \cdot (40\,ft + \frac{1.5 \cdot 3.0\,ft}{2})}{15} = 3,748.33\,psf(1.874\,tsf)$$

$$q_{b1} = 9(1.874 \ tsf) = 16.870 \ tsf$$

Average undrained shear strength 3B below the tip

$$C_{u} = \frac{(30tsf \cdot 2000) - (100pcf) \cdot (40ft + \frac{3 \cdot 3.0ft}{2})}{15} = 3,703.00 \ psf(1.852 \ tsf)$$

$$q_{b2} = 9 \cdot (1.852 \ tsf) = 16.665 \ tsf$$

Average Unit skin friction

$$q_{ave} = \frac{16.66 + 16.87}{2} = 16.77 \ tsf$$
$$Q_b = (16.77 \ tsf) \left(\frac{\pi \ 3^2}{4}\right)$$
$$Q_b = 118.514 \ Tons$$

4- Total Capacity:

$$Q_T = Skin \ Friction + End \ Bearing$$
  
 $Q_T = 242.42 + 118.54$   
 $Q_T = 360.94 \ Tons$   
 $Q_s = 242.42 \ Tons, \ Q_b = 118.54 \ Tons, \ Q_T = 360.94 \ Tons$ 

5- Settlement:

a) Settlement = 0.3"

$$R\% = \frac{S}{B} \cdot 100 = \frac{0.3}{36} \cdot 100 = 0.833$$

Side friction mobilization: 0.74 < R% < 2.0

$$\frac{Q_{s(mob)}}{Q_s} = 0.978929 - 0.115817(R - 0.74)$$
$$Q_{s(mob)} = [0.978929 - 0.115817(0.833 - 0.74)] \cdot 242.42$$
$$Q_{s(mob)} = 234.70 Tons$$

End bearing mobilization: R < 6.5

$$\frac{Q_{b(mob)}}{Q_{b}} = 1.1832 \cdot 10^{-4} (R)^{5} - 3.7091 \cdot 10^{-3} (R)^{4} + 4.4944 \cdot 10^{-2} (R)^{3} - 0.26537 (R)^{2} + 0.78436 (R)$$

$$\frac{Q_{b(mob)}}{118.54} = 1.18 \cdot 10^{-4} (0.83)^{5} - 3.71 \cdot 10^{-3} (0.83)^{4} + 4.49 \cdot 10^{-2} (0.83)^{3} - 0.26 (0.83)^{2} + 0.78 (0.83)$$

$$\frac{Q_{b(mob)}}{Q_{b(mob)}} = 58.5 \text{ Tons}$$

$$Q_{T} @ 0.3" = 234.70 + 58.5 = 293.2 \text{ Tons}$$
1.7.2 Example 2: Multi Layer Clay with Casing, but B>75" (1.9m):



1- Undrained Shear Strength calculation from CPT results

$$Cu = \frac{q_c - \sigma_0}{15}$$

 $\sigma_{o}:$  average stress  $q_{c}:$  tip cone resistance

Clay Layer # 1:

$$Cu = \frac{(16 \cdot 2000) - (10 \cdot 100)}{15} = 2,066.67 \ psf(1.0333 \ tsf)$$

Clay Layer # 2:

$$Cu = \frac{(30 \cdot 2000) - (30 \cdot 100)}{15} = 3,800 \ psf(1.90 \ tsf)$$

2- Skin Friction:

Skin friction coefficient

 $f_{su} = \alpha \cdot Cu$ 

Layer #1:

 $f_{su} = 0.55 \cdot (1.0333 \, tsf) = 0.568 \, tsf$ 

Layer#2:

$$f_{su} = 0.55 \cdot (1.90 \, tsf) = 1.045 \, tsf$$

$$Q_{s} = \int_{L_{t}}^{L_{f}} f_{su} dA$$

$$Q_{s} = \int_{6'}^{20'} (0.568 \ tsf) \cdot (\pi \cdot 8.0 \ ft) + \int_{20'}^{32'} (1.045 \ tsf) \cdot (\pi \cdot 8.0 \ ft)$$

$$Q_{s} = \pi \cdot 8.0 \cdot \left[ (20' - 6') (0.568) + (32' - 20') (1.045) \right]$$

$$Q_{s} = 515.14 \ Tons$$

$$Q_{b} = q_{b} \left(\frac{\pi B^{2}}{4}\right) \qquad q_{b} = N_{c} \cdot \overline{C_{u}}$$

$$N_{c} = 6.0 \cdot \left[1 + 0.2 \left(\frac{40'}{8'}\right)\right] = 12 > 9 \quad (use 9) \quad \left[Skempton \ (1951)\right]$$

$$\overline{C_{u}} = \frac{q_{c} - \overline{\sigma_{0}}}{15}$$

Average undrained shear strength 1.5B above the tip

$$C_u = \frac{(30tsf \cdot 2000) - (100\,pcf) \cdot (40\,ft - \frac{1.5 \cdot 8.0\,ft}{2})}{15} = 3,773.33\,psf(1.887\,tsf)$$

$$q_{b1} = 9 \cdot (1.887 \ tsf) = 16.98 \ tsf$$

Average undrained shear strength 3B below the tip

$$C_{u} = \frac{(30tsf \cdot 2000) - (100\,pcf) \cdot (40\,ft + \frac{3 \cdot 8.0\,ft}{2})}{15} = 3,653.33\,psf(1.827\,tsf)$$

$$q_{b2} = 9 \cdot (1.827\,tsf) = 16.44\,tsf$$

Average Unit skin friction

$$q_{ave} = \frac{16.98 + 16.44}{2} = 16.71 \text{ tsf}$$
$$Q_b = (16.71 \text{ tsf}) \left(\frac{\pi 8^2}{4}\right)$$
$$Q_b = 839.94 \text{ Tons}$$

4- Corrected end bearing If B > 75 ", then  

$$q_{br} = F_r \cdot q_b$$

$$F_r = \frac{2.5}{\left[a B_b \left(inches\right) + 2.5 b\right]}$$

$$a = 0.0071 + 0.0021 \left(\frac{L}{B_b}\right); \qquad b = 0.45 \sqrt{C_u} , \quad C_u \text{ in ksf}$$

Cu at the mid-level of bearing layer change and pile tip.

$$C_u = \frac{(30tsf \cdot 2000) - (100\,pcf) \cdot (40\,ft - \frac{(40 - 20)\,ft}{2})}{15} = 3,800.00\,\,psf\,(1.9\,tsf)$$

. . . .

$$a = 0.0071 + 0.0021 \left(\frac{40'}{8'}\right); \qquad b = 0.45\sqrt{1.9 \cdot 2.0}$$

$$a = 0.018, \text{ but } a \le 0.015; \qquad b = 0.8772, \ 0.5 < b < 1.5$$

$$F_r = \frac{2.5}{\left[0.015(96'') + 2.5(0.8772)\right]} = 0.6881$$

$$Q_{br} = F_r \cdot Q_b$$

$$Q_{br} = (0.6881) \cdot (839.94) Tons$$

$$\boxed{Q_{br} = 579.96 \ Tons}$$

5- Total Capacity:  $Q_T = Skin \ Friction + Corrected \ End \ Bearing$   $Q_T = 515.14 + 577.96$  $\overline{Q_T} = 1093.10 \ Tons$ 

 $Q_s = 515.14 \text{ Tons}, \quad Q_{br} = 577.96 \text{ Tons}, \quad Q_T = 1093.10 \text{ Tons}$ 

6- Settlement

a) Settlement = 3.0"Side friction mobilization: R% > 2.0End bearing mobilization: R<6.5</li>

# 1.7.3 Example 3: Multilayer - Sand - Sand



\_

1- Skin Friction:

\_

In sand layers with blowcounts of less than 15, an adjustment is made by dividing the blowcount by 15, and multiplying this value by  $\beta$ .

$$\beta = 1.5 - 0.135 \cdot \sqrt{z}; \quad 0.25 < \beta < 1.2$$

$$Q_s = \pi \cdot B \cdot \left(\int_{-6}^{25} \beta \cdot \frac{10}{15} \sigma_v dz + \cdot \int_{-25}^{40} \beta \sigma_v dz\right)$$

$$Q_s = \pi \cdot 3 \cdot \left(\left(\frac{10}{15}\right)\int_{-6}^{25} (1.5 - 0.135 \cdot \sqrt{z}) \cdot (\gamma \cdot z) \cdot dz + \int_{-25}^{40} (1.5 - 0.135 \cdot \sqrt{z}) \cdot (\gamma \cdot z) \cdot dz\right)$$

$$Q_{s} = \pi \cdot 3 \cdot \left( \left( 0.667 \right) \int_{6}^{25} \left( 150 \cdot z - 13.5 \cdot z^{\frac{3}{2}} \right) dz + \int_{25}^{40} \left( 150 \cdot z - 13.5 \cdot z^{\frac{3}{2}} \right) dz \right)$$

$$Q_{s} = \pi \cdot 3 \cdot \left[ (0.667) \left( \frac{150 \cdot z^{2}}{2} - 13.5 \cdot z^{5/2} \cdot \frac{2}{5} \right) \Big|_{6}^{25} + \left( \frac{150 \cdot z^{2}}{2} - 13.5 \cdot z^{5/2} \cdot \frac{2}{5} \right) \Big|_{25}^{40} \right]$$

$$Q_{s} = \pi \cdot 3 \cdot \left[ (0.667) \cdot (30,000 - 2,223.82) + (65,355.84 - 30,000) \right]$$

$$Q_{s} = 53,882.55 \cdot \frac{3 \cdot \pi}{2000}$$

$$Q_{s} = 253.91 Tons$$

2- End Bearing: Above 1.5B and Below 2B: *Above*: 40.0 - 1.5*B* = 40.0 - 1.5 · 3 = 35.5 *ft Below*: 40.0 + 2*B* = 40.0 + 2 · 3 = 46 *ft For*: *z* = 35.5 *ft*  $\rightarrow$  *N*<sub>spt</sub> = 15 *blow*/ *ft z* = 46 *ft*  $\rightarrow$  *N*<sub>spt</sub> = 15 *blow*/ *ft N*<sub>spt(average)</sub> = 15 *blow*/ *ft q*<sub>b</sub> = (0.60 · 15) = 9.0*tsf Q*<sub>b</sub> = *q*<sub>b</sub> ·  $\left[\frac{\pi B^2}{4}\right]$ *Q*<sub>b</sub> = 9.0 ·  $\left[\frac{\pi 3^2}{4}\right] = \overline{[63.62 Tons]}$ 

3- Total Capacity:  $Q_T = Skin \ Friction + End \ Bearing$ 

$$Q_T = 253.91 + 63.62$$
  
 $Q_T = 317.53 \text{ Tons}$   
 $Q_s = 253.91 \text{ Tons}, \quad Q_b = 63.62 \text{ Tons}, \quad Q_T = 317.53 \text{ Tons}$ 

4- Settlement:

a) Settlement = 1.44 "

$$R\% = \frac{S}{B} \cdot 100 = \frac{1.44}{36} \cdot 100 = 4.0$$

Side friction mobilization: R% > 0.908333

$$\frac{Q_{s(mob)}}{Q_s} = 0.978112$$
$$Q_{s(mob)} = 253.91 \cdot 0.978112 = 248.35 Tons$$

End bearing mobilization:

$$\frac{Q_{b(mob)}}{Q_{b}} = -0.0001079 \cdot (4.00)^{4} + 0.0035584 \cdot (R)^{3} - 0.045115 \cdot (R)^{2} + 0.34861 \cdot (R)$$

$$\frac{Q_{b(mob)}}{63.62} = -0.00011 \cdot (4)^{4} + 0.0036 \cdot (4)^{3} - 0.045115 \cdot (4.00)^{2} + 0.349 \cdot (4)$$

$$Q_{b(mob)} = 55.52 \text{ Tons}$$

$$Q_{T} @ 1.44'' = 248.35 + 55.52 = 303.87 \text{ Tons}$$

### 1.7.4 Example 4: Multilayer - Sand - Clay - Sand:



#### 1-Skin Friction

#### Layer 1: Sand (6-20ft)

In sand layers with blowcounts of less than 15, an adjustment is made by dividing the blowcount by 15, and multiplying this value by  $\beta$ .

$$\beta = 1.5 - 0.135 \cdot \sqrt{z}; \quad 0.25 < \beta < 1.2$$

$$Q_s = \pi \cdot B \cdot \left(\int_{6}^{20'} \beta \cdot \frac{N}{15} \cdot \sigma_v dz\right)$$

$$Q_s = \pi \cdot 3 \cdot \left(\int_{6}^{20} (1.5 - 0.135 \cdot \sqrt{z}) \cdot \left(\frac{10}{15}\right) (\gamma \cdot z) \cdot dz\right)$$

$$Q_s = \frac{\pi \cdot 30}{15} \cdot \left(\left[\frac{150 \cdot z^2}{2} - 13.5 \cdot z^{\frac{5}{2}} \cdot \frac{2}{5}\right]_{6}^{20}\right)$$

$$Q_{s} = \frac{\pi \cdot 30}{15} \cdot (20, 340.186 - 2, 223.82)$$
$$Q_{s} = 18,116.37 \cdot \frac{30 \cdot \pi}{15} \cdot \frac{1}{2000}$$
$$Q_{s1} = 56.91 Tons$$

Layer 2: Clay (20-40ft)  

$$f_{su} = \alpha \cdot Cu$$
  
 $f_{su} = 0.55 \cdot (1.90 \ tsf) = 1.045 \ tsf$ 

$$Q_{s} = \int_{L_{t}}^{L_{f}} f_{su} dA$$

$$Q_{s} = \int_{20'}^{40'} (1.045 \ tsf) \cdot (\pi \cdot 3.0 \ ft)$$

$$Q_{s} = \pi \cdot 3.0 \cdot \left[ (40' - 20') (1.045) \right]$$

$$Q_{s2} = 196.98 \ Tons$$

Layer 3: Sand (40-60ft)

$$Q_{s} = \pi \cdot 3 \cdot \int_{40}^{60} (1.5 - 0.135 \cdot \sqrt{z}) \cdot (\gamma \cdot z) \cdot dz$$
$$Q_{s} = \pi \cdot 3 \cdot \int_{40}^{60} (150 \cdot z - 13.5 \cdot z^{\frac{3}{2}}) dz$$
$$Q_{s} = \pi \cdot 3 \cdot \left[\frac{150 \cdot z^{2}}{2} - 13.5 \cdot z^{\frac{5}{2}} \cdot \frac{2}{5}\right]_{40}^{60}$$

$$Q_{s} = \pi \cdot 3 \cdot (150,000 - 95,937.40)$$
$$Q_{s} = 54,062.6 \cdot \frac{3 \cdot \pi}{2000}$$
$$Q_{s3} = 254.76 \text{ Tons}$$

$$Q_s = Q_{s1} + Q_{s2} + Q_{s3}$$
$$Q_s = 56.91 + 196.98 + 254.76$$
$$Q_s = 508.65 \ Tons$$

2- End Bearing: Above 1.5B and Below 2B: *Above*:  $60.0 - 1.5B = 60.0 - 1.5 \cdot 3 = 55.5 ft$  *Below*:  $60.0 + 2B = 60.0 + 2 \cdot 3 = 66 ft$  *For*:  $z = 55.5 ft \rightarrow N_{spt} = 15 blow / ft$   $z = 66 ft \rightarrow N_{spt} = 15 blow / ft$  $N_{spt(average)} = 15 blow / ft$ 

$$Q_b = q_b \cdot \left[\frac{\pi B^2}{4}\right]$$

$$q_b = (0.60 \cdot N_{spt})$$

$$q_b = (0.60 \cdot 15) = 9.0tsf$$

$$Q_b = 9.0 \cdot \left[\frac{\pi 3^2}{4}\right] = \boxed{63.62 \text{ Tons}}$$

| 3- Total Capacity:                      |                     |
|-----------------------------------------|---------------------|
| $Q_T = Skin \ Friction + End \ Bearing$ |                     |
| $Q_T = 253.91 + 63.62$                  |                     |
| $Q_T = 317.53 \ Tons$                   |                     |
| $Q_s = 253.91 Tons,  Q_b = 63.62 Tons,$ | $Q_T = 317.53 Tons$ |

### 1.7.5 Example 5: IGM: (Sand & Limestone)



Because of unit comparison problems, calculate Sand using English and Rock using SI units.

1. Skin Friction (Sand):

In sand layers with blowcounts of less than 15, an adjustment is made by dividing the blowcount by 15, and multiplying this value by  $\beta$ .

$$Q_{s} = \frac{\pi D}{2000} \int_{6.56}^{20} \beta \cdot \left(\frac{N}{15}\right) \sigma_{z} dz$$

$$Q_{s} = \frac{3.28 \pi}{2000} \cdot \left(\frac{10}{15}\right) \int_{6.56}^{20} (1.5 - 0.135 \sqrt{Z}) \gamma z dz$$

$$= 0.003435 \left[ 75 \cdot (20^{2} - 6.56^{2}) - 5.4 \cdot (20^{5/2} - 6.56^{5/2}) \right]$$

Q<sub>s</sub> = 60.82 tons (541.08 kN)

2. UF method (Rock): (Note: Must enter values for  $\boldsymbol{q}_u$  and  $\boldsymbol{q}_t)$  Skin Friction (Rock)

$$Q_s = \pi D L f_{su}$$
  
 $f_{su} = 0.5 \sqrt{q_u} \sqrt{q_t}$   
 $Q_s = \pi (1 \text{ m}) (3.05 \text{ m}) (151.41 \text{ kN/m}^2)$ 

Q<sub>s</sub> = 1450.79 kN

Total Skin Friction  $\Sigma Q_s = 541.08 + 1450.79 = 1992 \text{ kN}$ 

End Bearing (Rock) Assuming  $qb = \frac{1}{2} qu$ 

$$Q_b = \frac{\pi D^2}{4} q_b$$

Q<sub>b</sub> = 376 kN

3. Total Capacity :  $Q_t = \Sigma Q_s + Q_b = 1992 + 376 = 2368 \text{ kN}$ 

#### **Settlement Calculation**

Sand Layer

Skin Friction -

 $Q_s/Q_{smax} = -2.16*R^4 + 6.34*R^3 - 7.36*R^2 + 4.15*R$  For  $R \le 0.908333$ 

$$Q_s/Q_{smax} = 0.978112$$
 for R > 0.908333

where R = 100 \* Settlement / D, and  $Q_{smax}$  = 541.08 kN (Check above)

Rock Layer:

Skin Friction -

Find the average  $E_m$ ,  $f_{su}$ , and n along the side of the rock socket.

$$E_{m\_avg} = \frac{\sum E_{mk} L_k}{\sum L_k} \text{ where } E_m = 115 \ q_u$$
$$f_{su\_avg} = \frac{\sum f_{su} L_k}{\sum L_k} \text{ where, } f_{su} = A \bullet q_u^B \text{ (selecting A = 0.4 and B = 1)}$$

$$n = \frac{\sigma_n}{q_u}$$

For "rough" sockets; where,  $\sigma_n = \gamma_c Z_c M$ 

Only one IGM layer is present.

 $E_{m_avg} = E_m = 115 \text{ q}_u = 110400 \text{ kPa}$ 

 $f_{su_avg} = f_{su} = 151.41 \text{ kPa}$ 

 $n_{avg} = n$ 

 $\gamma_c$  = 20.4 kN/m<sup>3</sup>, M = 0.627 (for  $Z_c$  = 7.625 m and Slump = 152.4 mm)

 $\sigma_n = \gamma_c Z_c M = 97.53 \text{ kN/m}^2$ 

 $n_{avg} = n(\sigma_{n'} q_u) = 0.102$ 

Calculate  $\Omega,$  and  $\Gamma$ 

$$\Omega = 1.14 \left(\frac{L}{D}\right)^{0.5} - 0.05 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10} \left(\frac{E_c}{E_{m_avg}}\right) - 0.44$$
$$\Gamma = 0.37 \left(\frac{L}{D}\right)^{0.5} - 0.15 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10} \left(\frac{E_c}{E_{m_avg}}\right) + 0.13$$

Calculate  $\Theta_{f} and \ K_{f}$ 

$$\Theta_f = \frac{E_{m\_avg}\Omega}{\pi L\Gamma f_{su\_avg}} w_t$$

$$K_{f} = n_{avg} + \frac{\left(\Theta_{f} - n_{avg}\right)\left(1 - n_{avg}\right)}{\Theta_{f} - 2n_{avg} + 1} < 1$$



Side shear load capacity – settlement

$$Q_s = \pi DL \Theta_f f_{su_avg} \qquad \Theta_f < n_{avg}$$
$$Q_s = \pi DL K_f f_{su_avg} \qquad \Theta_f > n_{avg}$$

 $K_f = 1.0$  when,  $K_f < n_{avg}$ 

End bearing -settlement (Rock)

$$Q_b = \frac{\pi D^2}{4} q_b$$

where  $q_b = \Lambda W_t^{0.67}$  , and

$$\Lambda = 0.0134 E_{m\_tip} \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}+1\right)} \left\{ \frac{200 \left[\left(\frac{L}{D}\right)^{0.5} - \Omega\right] \left[1 + \frac{L}{D}\right]}{\pi L \Gamma} \right\}^{0.67}$$

For 2mm and 5mm settlement at top of rock socket ( $w_t = 0.002m$  and  $w_t = 0.005m$ )

| Settlement                            | 2mm                     | 5mm                     |
|---------------------------------------|-------------------------|-------------------------|
| E <sub>m_avg</sub>                    | 110400 kPa              | 110400 kPa              |
| f <sub>su_avg</sub>                   | 151.41 kPa              | 151.41 kPa              |
| n <sub>avg</sub>                      | 0.102                   | 0.102                   |
| Omega, Ω                              | 1.462                   | 1.462                   |
| Lamda, Г                              | 0.507                   | 0.507                   |
| Λ                                     | 14769 kN/m <sup>2</sup> | 14769 kN/m <sup>2</sup> |
| Θ <sub>f</sub>                        | 0.437                   | 1.093                   |
| К <sub>f</sub>                        | 0.346                   | 0.573                   |
| R                                     | 0.2                     | 0.5                     |
| Side Friction (Q <sub>s</sub> , Sand) | 315.65 kN               | 484.50 kN               |
| Side Friction (Q <sub>s</sub> , Rock) | 502.00 kN               | 831.3 kN                |
| End bearing (Q <sub>b</sub> , Rock)   | 180.3 kN                | 333.2 kN                |
| Total Capacity (Q <sub>t</sub> )      | 998 kN                  | 1649 kN                 |

### 1.7.6 Example 6: IGM: (Sand, Clay & Limestone)



1. Skin Friction (Sand):

In sand layers with blowcounts of less than 15, an adjustment is made by dividing the blowcount by 15, and multiplying this value by  $\beta$ .

$$Q_{s} = \frac{\pi D}{2000} \int_{6.56}^{20} \beta \cdot \left(\frac{N}{15}\right) \sigma_{z} dz$$
$$Q_{s} = \frac{3.28 \pi}{2000} \cdot \left(\frac{10}{15}\right) \int_{6.56}^{20} (1.5 - 0.135\sqrt{Z}) \gamma z dz$$

$$= 0.003435 \left[ 75 \cdot \left( 20^2 - 6.56^2 \right) - 5.4 \cdot \left( 20^{\frac{5}{2}} - 6.56^{\frac{5}{2}} \right) \right]$$

Q<sub>s</sub> = 60.82 tons (541.08 kN)

- 2. Skin Friction (Clay):  $Q_s = \pi D L a C_u$   $Q_s = \pi (1 m) (3.05 m) (0.55 \cdot 181.94)$  $Q_s = 958.85 \text{ kN} (107.78 \text{ tons})$
- 3. Skin Friction (Rock):  $Q_s = \pi D L f_{su}$   $f_{su} = 0.5 \sqrt{q_u} \sqrt{q_t}$   $Q_s = \pi (1 \text{ m}) (3.05 \text{ m}) (151.41 \text{ kN/m}^2)$

Total Skin Friction  $\Sigma Q_s = 541.08 + 958.85 \text{ kN} + 1450.79 \text{ kN} = 2950.72 \text{ kN} (331.67 \text{ tons})$ 

4. End Bearing (Rock):

Assuming  $qb = \frac{1}{2} qu$ 

$$Q_b = \frac{\pi D^2}{4} q_b$$

Q<sub>b</sub> = 376 kN (42.27 tons)

5. Total Capacity :

$$Q_t = \Sigma Q_s + Q_b = 2950.72 + 376 = 3326.72 \text{ kN} (373.94 \text{ tons})$$

#### **Settlement Calculation**

Sand Layer

Skin Friction -

 $Q_s/Q_{smax} = -2.16*R^4 + 6.34*R^3 - 7.36*R^2 + 4.15*R$  For  $R \le 0.908333$ 

 $Q_s/Q_{smax} = 0.978112$  for R > 0.908333

where R = 100 \* Settlement / D, and  $Q_{smax}$  = 541.08 kN (Check above)

Clay Layer Skin Friction -

$$\begin{split} &Q_s/Q_{smax} = 0.593157*\text{R}/0.12 \quad \text{for R} \leq 0.12 \\ &Q_s/Q_{smax} = \text{R}/(0.095155+0.892937*\text{R}) \quad \text{for R} \leq 0.74 \\ &Q_s/Q_{smax} = 0.978929-0.115817*(\text{R}-0.74) \quad \text{for R} \leq 2.0 \\ &Q_s/Q_{smax} = 0.833 \quad \text{for R} > 2.0 \end{split}$$

where R = 100 \* Settlement / D, and  $Q_{smax}$  = 958.85 kN (Check above)

Rock Layer:

Skin Friction -

Find the average  $E_m$ ,  $f_{su}$ , and n along the side of the rock socket.

$$E_{m\_avg} = \frac{\sum E_{mk} L_k}{\sum L_k} \text{ where } E_m = 115 \ q_u$$
$$f_{su\_avg} = \frac{\sum f_{su} L_k}{\sum L_k} \text{ where, } f_{su} = A \bullet q_u^B \text{ (selecting A = 0.4 and B = 1)}$$

$$n = \frac{\sigma_n}{q_u}$$
 For "rough" sockets;

where,  $\sigma_n = \gamma_c Z_c M$ 

Only one IGM layer is present.

 $E_{m_avg} = E_m = 115 \text{ q}_u = 110400 \text{ kPa}$ 

 $f_{su_avg} = f_{su} = 151.41 \text{ kPa}$ 

 $n_{avg} = n$ 

 $\gamma_c$  = 20.4 kN/m<sup>3</sup>, M = 0.548 (for  $Z_c$  = 10.675 m and Slump = 152.4 mm)

 $\sigma_n = \gamma_c Z_c M = 119.34 \text{ kN/m}^2$ 

 $n_{avq} = n(\sigma_{n'} q_u) = 0.1246$ 

Calculate  $\Omega$ , and  $\Gamma$ 

$$\Omega = 1.14 \left(\frac{L}{D}\right)^{0.5} - 0.05 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10} \left(\frac{E_c}{E_{m_avg}}\right) - 0.44$$
$$\Gamma = 0.37 \left(\frac{L}{D}\right)^{0.5} - 0.15 \left(\left(\frac{L}{D}\right)^{0.5} - 1\right) \log_{10} \left(\frac{E_c}{E_{m_avg}}\right) + 0.13$$

Calculate  $\Theta_{f} and \ K_{f}$ 

$$\Theta_f = \frac{E_{m\_avg}\Omega}{\pi L\Gamma f_{su\_avg}} w_t$$

$$K_{f} = n_{avg} + \frac{\left(\Theta_{f} - n_{avg}\right)\left(1 - n_{avg}\right)}{\Theta_{f} - 2n_{avg} + 1} < 1$$

where,  $w_t$  = Settlement at top of rock socket

Side shear load capacity – settlement

$$\begin{aligned} Q_s &= \pi D L \Theta_f f_{su_avg} & \Theta_f < n_{avg} \\ Q_s &= \pi D L K_f f_{su_avg} & \Theta_f > n_{avg} \end{aligned}$$

 $K_f = 1.0$  when,  $K_f < n_{avg}$ 

End bearing -settlement (Rock)

$$Q_b = \frac{\pi D^2}{4} q_b$$

where  $q_b = \Lambda W_t^{0.67}$  , and

$$\Lambda = 0.0134 E_{m_{tip}} \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}+1\right)} \left\{ \frac{200 \left[\left(\frac{L}{D}\right)^{0.5} - \Omega\right] \left[1 + \frac{L}{D}\right]}{\pi L \Gamma} \right\}^{0.67}$$

For 2mm and 5mm settlement at top of rock socket (w<sub>t</sub> = 0.002m and w<sub>t</sub> = 0.005m)

| Settlement                            | 2mm                     | 5mm                     |
|---------------------------------------|-------------------------|-------------------------|
| E <sub>m_avg</sub>                    | 110400 kPa              | 110400 kPa              |
| f <sub>su_avg</sub>                   | 151.41 kPa              | 151.41 kPa              |
| n <sub>avg</sub>                      | 0.1246                  | 0.1246                  |
| Omega, Ω                              | 1.462                   | 1.462                   |
| Lamda, Г                              | 0.507                   | 0.507                   |
| Λ                                     | 14769 kN/m <sup>2</sup> | 14769 kN/m <sup>2</sup> |
| Θ <sub>f</sub>                        | 0.437                   | 1.093                   |
| Kf                                    | 0.355                   | 0.608                   |
| R                                     | 0.2                     | 0.5                     |
| Side Friction (Q <sub>s</sub> , Sand) | 315.65 kN               | 482.91 kN               |
| Side Friction (Q <sub>s</sub> , Clay) | 700 kN                  | 884.84 kN               |
| Side Friction (Q <sub>s</sub> , Rock) | 514.81 kN               | 847.55 kN               |
| End bearing (Q <sub>b</sub> , Rock)   | 180.3 kN                | 333.2 kN                |
| Total Capacity (Q <sub>t</sub> )      | 1710.76 kN              | 2548.50 kN              |

## 2 Driven Piles

- 1. <u>SPT</u>
- 2. <u>CPT</u>

# 2.1 SPT

- 1. Concrete Piles
- 2. Steel Pipe Piles
- 3. <u>Steel H Piles</u>
- 4. Concrete Cylinder Piles
- 5. <u>Methodology</u>

# 2.1.1 Piles: Precast Concrete Piles (PCP)

In FB-Deep, there are two types of precast concrete pile (PCP) section types: square, and round. The unit skin friction and unit end bearing formulas are given in the two tables immediately below.

#### SIDE FRICTION

Unit side friction at a given depth is also based on the type of soil and the corresponding SPT blowcount. The following table shows the empirically derived equations for ultimate unit side friction versus blowcount for the four soil types.

| <u>Soil</u><br>Type | Soil Description                 | Unit Skin Friction (tsf)                      | SPT Blow Count<br>Range |
|---------------------|----------------------------------|-----------------------------------------------|-------------------------|
| 1                   | Plastic Clay                     | $f_s = 2 \cdot N \cdot (110 - N) / 4006.6$    | 3 ≤ <i>N</i> ≤ 60       |
| 2                   | Clay-silt-sand mixtures          | f <sub>s</sub> = 2 • N• (110 – N) /<br>4583.3 | 3 ≤ <i>N</i> ≤ 60       |
| 3                   | Clean Sands                      | $f_{\rm s}=0.019\cdot {\rm N}$                | $3 \le N \le 60$        |
| 4                   | Soft limestone, very shelly sand | $f_{\rm s} = 0.01 \cdot N$                    | 3 ≤ <i>N</i> ≤ 100      |
| 5                   | Void                             | $f_{\rm S} = 0.0$                             | n/a                     |

To convert TSF to kPa multiply the  $f_s$  by 95.76.

#### **END BEARING**

Unit end bearing at a given depth is based on the type of soil and the corresponding SPT blowcount. The following table shows the empirically derived equations for mobilized unit end bearing versus blowcount for the four soil types.

| <u>Soil</u><br>Type | Soil Description                 | Unit End Bearing (tsf)                                                | SPT Blow Count<br>Range |
|---------------------|----------------------------------|-----------------------------------------------------------------------|-------------------------|
| 1                   | Plastic Clay                     | $q_t = 0.7 \cdot N / 3$                                               | $3 \le N \le 60$        |
| 2                   | Clay-silt-sand mixtures          | $q_t = 1.6 \cdot N / 3$                                               | 3 ≤ <i>N</i> ≤ 60       |
| 3                   | Clean Sands                      | $q_t = 3.2 \cdot N / 3$                                               | 3 ≤ <i>N</i> ≤ 60       |
| 4                   | Soft limestone, very shelly sand | $q_t = 0.7873 \cdot N + 0.0026 \cdot N^2 + 1 \cdot 10^{-5} \cdot N^3$ | 3 ≤ <i>N</i> ≤ 100      |
| 5                   | Void                             | <i>q</i> <sub>t</sub> = 0.0                                           | n/a                     |

To convert TSF to kPa multiply the q<sub>t</sub> by 95.76.

The methodology used to calculate the end bearing capacity for a given depth includes the critical depth correction, and the end bearing contribution zone of 8B above and 3.5B below the pile tip is considered. Exception is when the PCP tip is in Limestone, the end bearing contribution zone of 4B below the pile tip only is considered and critical depth correction in not performed.

Database research at the University of Florida has indicated that, using the RB-121 methodology, it requires excessive pile movement to mobilize the calculated ultimate pile capacities. To better match the measured load test capacity values (using Davisson failure criteria) with calculated values, the "Mobilized End Bearing" has been set equal to 1/3 of the RB-121 ultimate end bearing value. The Davisson capacity equals the ultimate side friction plus the mobilized end bearing. The allowable pile capacity is taken as 1/2 the Davisson capacity. The ultimate capacity is then equal to the ultimate side friction plus 3 times the mobilized end bearing.

### 2.1.2 Piles: Steel Pipe Piles

#### SIDE FRICTION:

The following table shows the ultimate side friction versus SPT blowcounts for the five soil types, for steel pipe piles.

| <u>Soil</u><br>Type | Soil Description                                   | Ultimate Unit Side Friction (tsf)                                                                                            | <u>SPT Blow Count</u><br><u>Range</u> |
|---------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1                   | Plastic Clay                                       | $f_{\rm s} = 0.4236 \cdot \ln(N) - 0.5404$                                                                                   | 3 ≤ <i>N</i> ≤ 100                    |
| 2                   | Clay-silt-sand mixtures,<br>Very silty sand, silts | $\begin{split} f_s &= 0.029 + 0.045 \cdot N - 8.98 \cdot 10^{-4} \cdot N^2 + \\ 6.371 \cdot 10^{-6} \cdot N^3 \end{split}$   | 3 ≤ <i>N</i> < 40                     |
|                     | and marls                                          | $f_{\rm s} = 0.799944 + 0.00362 \cdot (N - 40)$                                                                              | $40 \le N \le 100$                    |
| 3                   | Clean Sands                                        | $\begin{split} f_s &= -0.026 + 0.023 \cdot N - 1.435 \cdot 10^{-4} \cdot N^2 - \\ 6.527 \cdot 10^{-7} \cdot N^3 \end{split}$ | 3 ≤ <i>N</i> < 40                     |
|                     |                                                    | $f_{\rm s} = 0.622627 + 0.003689 \cdot (N - 40)$                                                                             | $40 \le N \le 100$                    |
| 4                   | Soft limestone, very shelly sand                   | $f_{\rm s} = 0.01 \cdot N$                                                                                                   | 3 ≤ <i>N</i> ≤ 100                    |
| 5                   | Void                                               | $f_{\rm s} = 0.0$                                                                                                            | n/a                                   |

#### **END BEARING:**

For end bearing capacity of steel pipe piles there are two groups, based on pile diameter: steel pipe piles with a diameter of 36 inches or less, and those with a diameter greater than 36 inches.

#### For **Diameter ≤ 36**" (914.4mm)

The following table provides the plots of mobilized unit end bearing capacity versus SPT blow count for the five soil types, for steel pipe piles with a diameter  $\leq$  36" (914.4mm).

| <u>Soil</u><br>Type | Soil Description                                                | Unit End Friction (tsf)                                                                        | SPT Blow Count<br>Range |
|---------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|
| 1                   | Plastic Clay                                                    | $q = \frac{0.7 * N}{3}$                                                                        | 3 ≤ <i>N</i> ≤ 100      |
| 2                   | Clay-silt-sand mixtures,<br>Very silty sand, silts and<br>marls | $q = \frac{1.6*N}{3}$                                                                          | 3 ≤ <i>N</i> ≤ 100      |
|                     |                                                                 | $q = \frac{3.2 * N}{3}$                                                                        | 3 ≤ <i>N</i> ≤ 30       |
| 3                   | Clean Sands                                                     | $q = 32.0 + \frac{4.0*(N-30.0)}{30.0}$                                                         | 30 < <i>N</i> ≤ 100     |
|                     |                                                                 | q = 1.2 * N                                                                                    | 3 ≤ <i>N</i> ≤ 30       |
| 4                   | Soft limestone, very shelly sand                                | $q = 1.2*N \qquad 3 \le N \le 30$ $q = 36.0 + \frac{7.0*(N-30.0)}{30.0} \qquad 30 < N \le 100$ | 30 < <i>N</i> ≤100      |
| 5                   | Void                                                            | q = 0.0                                                                                        | n/a                     |

#### For Diameter > 36" (914.4mm)

The formulas for large diameter steel pipe piles can be seen in the following tables, which are based on the work of M. C. McVay, D. Badri, and Z. Hu, from the report "Determination of Axial Pile Capacity of Prestressed Concrete Cylinder Piles", 2004, Table 8-3, page 95.

| <u>Soil</u><br>Type | Soil Description | Unit End Friction (tsf) | <u>SPT Blow Count</u><br><u>Range</u> |
|---------------------|------------------|-------------------------|---------------------------------------|
|                     |                  |                         |                                       |

| 1 | Plastic Clay                     | $q_t = .2226N$                         | 3 ≤ <i>N</i> ≤ 100     |
|---|----------------------------------|----------------------------------------|------------------------|
| 2 | Clay-silt-sand mixtures          | $q_t = .4101N$                         | 3 ≤ <i>N</i> ≤ 100     |
| 3 | Clean Sands                      | $q_t = .5676N$                         | 3 ≤ <i>N</i> ≤ 100     |
|   |                                  | q = 1.2 * N                            | 3 ≤ <i>N</i> ≤ 30      |
| 4 | Soft limestone, very shelly sand | $q = 36.0 + \frac{7.0*(N-30.0)}{30.0}$ | 30 <i>&lt; N</i> ≤ 100 |
| 5 | Void                             | <i>q</i> = 0.0                         | n/a                    |

Note: for input files created on FB-Deep, version 1.18 and previous, the end bearing formulas will NOT be used for steel pipe piles with a diameter greater than 36" (914.4). Instead, the formulas for diameter lesser than 36" (914.4) will be used. This is for the sake of backwards compatibility. If you want an old file to use these new large diameter formulas, simply open the file in FB-Deep v201 or later, and resave it.

N is blowcount  $f_s$  is unit skin friction  $q_t$  is unit end bearing

The methodology used to calculate the end bearing capacity for a given depth includes the critical depth correction, the end bearing contribution zone of 8B above and 3.5B below the pile tip is considered.

\*Pipe pile can be assigned open-ended or closed-ended by the user. For open-ended condition, the program internally checks the pile to be plugged or unplugged. The capacity is then selected as per the lower pre-diction between the sum of "outer" and "inner" skin friction and end bearing on the annulus (unplugged condition), and sum of "outer" skin friction and end bearing of the closed-end cross section (plugged condition).

The corrected mobilized end bearing capacity is then computed as per plugged or unplugged condition.

### **PILE CAPACITY**

Davisson's criteria is not used for this pile type because of the uncertainty of computing elastic settlement for a plugged pile. Instead the mobilized ultimate pile capacity is defined as an applied load at a settlement equal to three percent (3%) the diameter of the pile. The allowable pile capacity is equal to 1/2 the mobilized ultimate pile capacity. The ultimate pile capacity is determined as the ultimate side friction plus three (3) times the mobilized end bearing.

### 2.1.3 Piles: Steel H Piles

### SIDE FRICTION

The empirical equations for the ultimate side friction versus SPT blowcount, which are derived from the database, are as follows:

| <u>Soil</u><br>Type | Soil Description                 | Unit Skin Friction (tsf)                                                                                                      | <u>SPT Blow Count</u><br><u>Range</u> |
|---------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1                   | Plastic Clay                     | $f_{\rm s} = 2 \cdot N \cdot (110 - N) / 5335.9$                                                                              | $3 \le N \le 60$                      |
| 2                   | Clay-silt-sand mix-<br>tures     | $\begin{split} f_s &= -0.0227 + 0.033 \cdot N - 4.576 \cdot 10^{-4} \cdot N^2 + \\ 2.465 \cdot 10^{-6} \cdot N^3 \end{split}$ | 3 ≤ N < 75                            |
| 3                   | Clean Sands                      | $f_{\rm s} = 0.0112 \cdot N$                                                                                                  | $3 \le N \le 60$                      |
| 4                   | Soft limestone, very shelly sand | $f_{s} = 0.0076 \cdot N$                                                                                                      | 3 ≤ <i>N</i> < 100                    |
| 5                   | Void                             | $f_{\rm s} = 0.0$                                                                                                             | n/a                                   |

The H-Pile circumference used for the skin friction calculation in all soil types (soil type 1, 2, 3, and 4, namely, clay, silt, sand , and limestone) is considering 50% plugged condition. Circumference = (3 •Width + 2 •Depth)





The 'Width', and 'Depth' field can be seen in the 'Pile Geometry' table on the program's main screen.

#### **END BEARING**

The empirical equations (for the five soil types) for the plots of the mobilized unit end bearing capacity versus SPT blow count are presented as follows:

| <u>Soil</u><br>Type | Soil Description                 | <u>Unit End Bearing</u><br>(tsf) | <u>SPT Blow Count</u><br>Range |
|---------------------|----------------------------------|----------------------------------|--------------------------------|
| 1                   | Plastic Clay                     | $q_t = 0.7 \cdot N / 3$          | $3 \le N \le 60$               |
| 2                   | Clay-silt-sand mixtures          | $q_t = 1.6 \cdot N / 3$          | $3 \leq N < 60$                |
| 3                   | Clean Sands                      | $q_t = 3.2 \cdot N / 3$          | $3 \le N \le 60$               |
| 4                   | Soft limestone, very shelly sand | $q_t = 3.6 \cdot N / 3$          | 3 ≤ <i>N</i> < 100             |
| 5                   | Void                             | <i>q</i> <sub>t</sub> = 0.0      | n/a                            |

The methodology used to calculate the end bearing capacity for a given depth includes no critical depth correction, and the end bearing contribution zone of 4B below the pile tip only.

For H-Pile end bearing calculations in all soil types (soil type 1, 2, 3, and 4, namely, clay, silt, sand , and limestone), 50% plugged condition is considered. Half of the product of the user-inputted 'Width' and 'Depth' is used to calculate the pile tip area (Pile Tip Area = 0.5 x Width x Depth).

The 'Width', and 'Depth' field can be seen in the 'Pile Geometry' table on the program's main screen.

### **PILE CAPACITY**

Davisson's criteria is used for this pile type. The Davisson capacity equals the ultimate side friction plus the mobilized end bearing. The mobilized end bearing capacity is defined as 1/3 of the calculated ultimate end bearing using the RB-121 methodology. The allowable pile capacity is taken as 1/2 the Davisson capacity. The ultimate capacity is then equal to the ultimate side friction plus 3 times the mobilized end bearing, with the following exception: for H-Piles tipped in sand or limestone, the ultimate pile capacity is the ultimate side friction plus 2 times the mobilized end bearing.

## 2.1.4 Concrete Cylinder Piles

#### **SIDE FRICTION:**

The following table shows the ultimate side friction versus SPT blowcounts for the five soil types, for concrete cylinder piles.

| <u>Soil</u><br>Type                                  | Soil Description                 | Ultimate Unit Side Friction (tsf)                                                                                            | <u>SPT Blow Count</u><br>Range |
|------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1                                                    | Plastic Clay                     | $f_s = 0.4236 \cdot ln(N) - 0.5404$                                                                                          | 3 ≤ <i>N</i> ≤ 100             |
| Clay-silt-sand mixtures,<br>2 Very silty sand, silts |                                  | $\begin{split} f_s &= 0.029 + 0.045 \cdot N - 8.98 \cdot 10^{-4} \cdot N^2 + \\ 6.371 \cdot 10^{-6} \cdot N^3 \end{split}$   | 3 ≤ <i>N</i> < 40              |
| and mar                                              | and marls                        | $f_{\rm s} = 0.799944 + 0.00362 \cdot (N - 40)$                                                                              | $40 \le N \le 100$             |
| 3                                                    | Clean Sands                      | $\begin{split} f_s &= -0.026 + 0.023 \cdot N - 1.435 \cdot 10^{-4} \cdot N^2 - \\ 6.527 \cdot 10^{-7} \cdot N^3 \end{split}$ | 3 ≤ <i>N</i> < 40              |
|                                                      |                                  | $f_{\rm s} = 0.622627 + 0.003689 \cdot (N - 40)$                                                                             | $40 \le N \le 100$             |
| 4                                                    | Soft limestone, very shelly sand | $f_s = 0.01 \cdot N$                                                                                                         | 3 ≤ <i>N</i> ≤ 100             |
| 5                                                    | Void                             | $f_{\rm s} = 0.0$                                                                                                            | n/a                            |

#### **END BEARING:**

For end bearing capacity of steel pipe piles there are two groups, based on pile diameter: steel pipe piles with a diameter of 36 inches or less, and those with a diameter greater than 36 inches.

#### For **Diameter ≤ 36**" (914.4mm)

The following table provides the plots of mobilized unit end bearing capacity versus SPT blow count for the five soil types, for concrete cylinder piles with a diameter  $\leq$  36" (914.4mm).

| <u>Soil</u><br>Type | Soil Description                 | <u>Unit End Bearing</u><br>(tsf) | SPT Blow Count<br>Range |
|---------------------|----------------------------------|----------------------------------|-------------------------|
| 1                   | Plastic Clay                     | $q_t = 0.7 \cdot N / 3$          | 3 ≤ <i>N</i> ≤ 100      |
| 2                   | Clay-silt-sand mixtures          | $q_t = 1.6 \cdot N / 3$          | 3 ≤ <i>N</i> ≤ 100      |
| 3                   | Clean Sands                      | $q_t = 3.2 \cdot N / 3$          | 3 ≤ <i>N</i> ≤ 100      |
| 4                   | Soft limestone, very shelly sand | $q_t = 3.6 \cdot N / 3$          | 3 ≤ <i>N</i> ≤ 100      |
| 5                   | Void                             | <i>q</i> <sub>t</sub> = 0.0      | n/a                     |

### For Diameter > 36" (914.4mm)

Large diameter cylinder piles have a diameter greater than 36 inches (914.4mm). The formulas for these piles can be seen in the following table, which are based on the work of M.C. McVay, D. Badri, and Z.Hu, from the report "Determination of Axial Pile Capacity of Prestressed Concrete Cylinder Piles", 2004, Table 8-3, page 95.

| <u>Soil</u><br>Type | Soil Description                 | <u>Unit End Bearing</u><br>(tsf) | SPT Blow Count<br>Range |
|---------------------|----------------------------------|----------------------------------|-------------------------|
| 1                   | Plastic Clay                     | q <sub>t</sub> = 0.2226• N       | $3 \le N \le 100$       |
| 2                   | Clay-silt-sand mixtures          | $q_t = 0.4101 \cdot N$           | 3 ≤ <i>N</i> ≤ 100      |
| 3                   | Clean Sands                      | $q_t = 0.5676 \cdot N$           | 3 ≤ <i>N</i> ≤ 100      |
| 4                   | Soft limestone, very shelly sand | $q_t = 3.6 \cdot N / 3$          | 3 ≤ <i>N</i> ≤ 100      |
| 5                   | Void                             | <i>q</i> <sub>t</sub> = 0.0      | n/a                     |

\*N is blowcount

f<sub>s</sub> is unit skin friction

q<sub>t</sub> is unit end bearing

Note: for input files created on FB-Deep, version 1.18 and previous, the above formulas will NOT be used for cylinder piles with a diameter greater than 36" (914.4). Instead, the formulas for diameter lesser than 36" (914.4) will be used. This is for the sake of backwards compatibility. If you want an old file to use the new large diameter formulas, simply open the input file in FB-Deep v2.01 or later, and resave it.

The methodology used to calculate the end bearing capacity for a given depth includes the critical depth correction, the end bearing contribution zone of 8B above and 3.5B below the pile tip is considered.

\*Concrete Cylinder pile can be assigned open-ended or closed-ended by the user. For open-ended condition, the program internally checks the pile to be plugged or unplugged. The capacity is then selected as per the lower prediction between the sum of "outer" and "inner" skin friction and end bearing on the annulus (unplugged condition), and sum of "outer" skin friction and end bearing of the closed-end cross section (plugged condition).

The corrected mobilized end bearing capacity is then computed as per plugged or unplugged condition.

## 2.1.5 Methodology

The methodology is based on empirical correlations between cone penetrometer tests and standard penetration tests for typical Florida soil types. Unit end bearing resistance and unit skin friction resistance versus SPT N values are given in RB-121 for the different soil types. The program recognizes five soil types:

Plastic Clay
 Clay and Silty Sand
 Clean Sand
 Limestone, Very Shelly Sand
 Void Layer

Per soil classification for mixture of soil and limestone aggregates, types of soil (either Type 2 or 3) is recommended.

In order to define the soil profile, the user inputs the depth, N value, and soil type of each SPT sample. A layer change is established at the elevation where a new soil type is input. The unit end bearing and unit side friction values at the interface correspond to the soil type below the layer change. Typical blowcount spacings are every 2.5 feet (.762 meters). Results based on spacings of greater than 5.00 feet (1.524 meters) can become inaccurate.

#### **END BEARING**

One of the basic assumptions of this program is that the soil 3.5B below and 8.0B above the pile tip contributes to the end bearing capacity. The value B refers to the diameter or width of the pile. An exception occurs when the bearing layer is weaker than the overlying layer. If this is the case, the upper limit terminates at the layer change rather than 8.0B, to prevent a "punching" type end bearing failure. Individual unit end bearing capacities are computed at each depth within the above ranges. When the pile tip, upper and lower limits of the range do not correspond to an actual sample depth, the capacity is determined by interpolating between the samples just above and below the desired depth. The average unit end bearing in each layer or range is determined by taking a weighted average of the end bearing values within the range.

The average unit end bearing above the pile tip is added to the average unit end bearing below the pile tip. The sum is divided by 2.0 to yield the average unit end bearing value. The uncorrected end bearing capacity is the average unit end bearing times the pile tip cross sectional area. Correction factors for the final end bearing capacity are discussed in the subsequent section CRITICAL DEPTH CORRECTIONS. (Also see section on AVERAGING UNIT SKIN FRICTION AND END BEARING OVER A LAYER below).

Exception is when the prestressed concrete piles (PCP) is in Limestone (soil type 4) or H-Pile in all soil types, the end bearing contribution zone of 4B below the pile tip only is considered and critical depth correction is not performed.

#### **SIDE FRICTION**

The ultimate side friction resistance in the layers above the bearing layer and in the bearing layer are determined separately. As with the unit end bearing, a weighted average technique is used to establish the ultimate unit skin friction in each layer or range. The unit side friction is multiplied by the corresponding surface area in each layer to calculate a cumulative ultimate skin friction. A correction factor for the ultimate side friction capacity of the bearing layer is required, and is discussed below. (Also see section on AVERAGE BLOWCOUNT below).

### AVERAGING UNIT SKIN FRICTION AND END BEARING OVER A LAYER

To determine the unit skin friction and unit end bearing contribution for a soil layer, an averaging technique is used. The average unit skin friction for a soil layer is computed as follows: the user-inputted blowcount for the top of a soil layer is applied to the unit skin friction formula for the layer. The next entry in the Boring Log is then inspected, and based on its blowcount and soil type, another unit skin friction calculation is made. These two unit skin frictions are then averaged. See Figure: 2.1.b and Figure: 2.1.c titled "Unit Skin Friction Averaging, A" and "Unit Skin Friction Averaging, B").
| 🌄 Boring Log                        |                                   |                                  |                                                                  | >                       |
|-------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------------------|-------------------------|
| Boring Identification               | Additiona                         | al Options                       |                                                                  |                         |
| Boring Date:                        | Ground                            | Surface Elevation: 0.000         | (ft)                                                             |                         |
| Boring Number:                      | Blow                              | count is obtained using automa   | tic hammer                                                       |                         |
| Station Number:                     | Correcti                          | on Factor; 1.000                 |                                                                  |                         |
| Offset:                             | ? Use (                           | default values for qb and Em     |                                                                  |                         |
| Boring Data                         |                                   |                                  |                                                                  |                         |
| Insert Layer Delete Lay             | /er Import/Export                 |                                  |                                                                  |                         |
| No.                                 | Depth                             | Soil                             | Soil                                                             | N. Blows                |
|                                     | (ft)                              | Туре                             | Description                                                      | (blow/ft)               |
| 1                                   | 0.000                             | 5                                | Void                                                             | 0.000                   |
| 2                                   | 8.000                             | 1                                | Plastic Clay                                                     | 0.000                   |
| 3                                   | 52.500                            | 3                                | Clean Sand                                                       | 13.000                  |
| 4                                   | 55.500                            | 5                                | Clean Sand                                                       | 5.000                   |
| 5                                   | 75.000                            | 1                                | Clean Sand                                                       | 22 000                  |
| •                                   | 75.000                            | 3                                | Crean Jonu                                                       | 22.000                  |
|                                     |                                   |                                  |                                                                  | -                       |
| Notes                               |                                   |                                  |                                                                  |                         |
| 1 Soil Types are as follows: 1 Plas | tic clayr 2. Clay and silty sand: | 3 Clean cand 4 Limestone very    | chelly cand: 5 Void final layer no canacity                      |                         |
| 2. Depths are relative to ground s  | urface elevation. The first layer | must have a depth of 0.          | sheny sand, 5. vold, intai rayer, no capacity.                   |                         |
| 3. Soil Description and E100 are n  | ot editable fields in the above   | table, and are NOT used in the a | analysis. They are imported fields when using the database, to h | elp assign a soil type. |
|                                     |                                   |                                  |                                                                  |                         |
|                                     |                                   | ОК                               | Cancel                                                           |                         |

Figure: 2.1.b Unit Skin Friction Averaging, A

In Figure: 2.1.b, "Unit Skin Friction Averaging: A", a clay soil layer begins at a depth of 8.00, with a blowcount of 0 blows/ft. This layer extends to a depth of 52.5 feet, where a sand layer begins, with a blowcount of 13 blows/ft. The average unit skin friction for this clay layer is computed as thusly:

Use soil type 1 (clay) formula for the depth at the top of the clay layer (8.00 ft):

(2.0 \* N)(110 – N) / 4006.6 = (2.0 \* 0.0)(110 – 0.0) / 4006.6 = (0.0)(110) / 4006.6 = 0.0 tsf

Use soil type 3 (sand) formula for the depth at the top of the next layer (52.5 feet): 0.019 \* N =

0.019 \* (13) = 0.247 tsf

Average the two unit skin frictions: (0.0 + 0.247) / 2 = 0.1235 tsf is the unit skin friction for the clay layer

Identical logic is used to compute an average unit end bearing in a layer, the only difference being the unit end bearing formulas are used in place of the skin friction formulas. Note, in the above example, if the user's intention was for the clay layer to have a blowcount of 0 blows/ft throughout the layer, then an additional entry could be made to the boring log for a clay layer with a depth of 52.5 feet, and a blowcount of 0.0; Then, the average unit skin friction would be be (0.0 + 0.0) / 2 = 0.0 tsf. This additional layer entry at 52.5 feet can be seen in Figure: 2.1.c "Unit Skin Friction Averaging, B".

| oring Identification            | Additi                             | onal Options              |                      |                    |                                              |                       |
|---------------------------------|------------------------------------|---------------------------|----------------------|--------------------|----------------------------------------------|-----------------------|
| Boring Date:                    | Grou                               | nd Surface Elevation:     | 0.000                | (ft)               |                                              |                       |
| Boring Number:                  | BI                                 | ow count is obtained      | using automatic ha   | mmer               |                                              |                       |
| Station Number:                 | Corre                              | ction Factor:             | 1.000                |                    |                                              |                       |
| Offset:                         | ?                                  | se default values for q   | b and Em             |                    |                                              |                       |
| ring Data                       |                                    |                           |                      |                    |                                              |                       |
| Insert Layer Delete I           | ayer Import/Export                 |                           |                      |                    |                                              |                       |
| No.                             | Depth                              | Soil                      |                      |                    | Soil                                         | N. Blows              |
|                                 | (ft)                               | Туре                      |                      |                    | Description                                  | (blow/ft)             |
| 1                               | 0.0                                | 00                        | 5                    |                    | Void                                         | 0.00                  |
| 2                               | 8.0                                | 00                        | 1                    |                    | Plastic Clay                                 | 0.00                  |
| 3                               | 52.5                               | 00                        | 3                    |                    | Clean Sand                                   | 13.00                 |
| 4                               | 55.5                               | 00                        | 3                    |                    | Clean Sand                                   | 6.00                  |
| 5                               | 56.0                               | 00                        | 1                    |                    | Plasue Class                                 | 15.00                 |
| 0                               | /5.0                               | 00                        | 3                    |                    | Clean Sand                                   | 22.00                 |
|                                 |                                    |                           |                      |                    |                                              |                       |
| otes                            |                                    |                           |                      |                    |                                              |                       |
| Soil Types are as follows: 1. P | lastic clay; 2. Clay and silty sar | id; 3. Clean sand; 4. Lir | mestone, very shelly | r sand; 5. Void, f | inal layer, no capacity.                     |                       |
| Depths are relative to group    | surface elevation. The first la    | yer must have a depth     | n of 0.              |                    |                                              |                       |
| . Depuis are relative to ground | not aditable fields in the abs     | ve table, and are NO      | I used in the analys | is. They are imp   | orted fields when using the database, to hel | p assign a soil type. |
| Soil Description and E100 are   | not eutable lielus in the abo      |                           |                      |                    |                                              |                       |

### Figure: 2.1.c Unit Skin Friction Averaging, B

#### **FICTITIOUS LAYERS**

A fictitious layer is an imaginary soil layer with a blowcount of less than 3, which will be rounded to a 0. Its role is to break up a thick soil layer whose blowcount varies greatly over the layer depth, to help ensure more accurate results. And because of the zeroed blowcount, fictitious layers do NOT make a skin friction or end bearing contribution of their own. Fictitious layers also help to clarify the contributions of each section of the thick soil layer, at various depths. (See Figure: 2.1.d and Figure: 2.1.e).

In this example, the sand layer is 30 feet thick, with the blowcounts varying within the layer as follows:

| Depth (ft) | Blowcount (blows/ft) |
|------------|----------------------|
| 0.0        | 7.0                  |
| 7.5        | 38.0                 |
| 19.0       | 51.0                 |
| 30.0       | 15.0                 |

| 違 Borin | g Log |
|---------|-------|
|---------|-------|

| Boring Identification                                                                                                                      | Addition                                                                 | al Options                                           |                          |            |                                                  |                     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|--------------------------|------------|--------------------------------------------------|---------------------|-----|
| Boring Date:                                                                                                                               | Ground                                                                   | Surface Elevation: 0.                                | 000                      | (ft)       |                                                  |                     |     |
| Boring Number:                                                                                                                             | Blow                                                                     | v count is obtained using                            | automatic ham            | imer       |                                                  |                     |     |
| Station Number:                                                                                                                            | Correct                                                                  | ion Factor: 1.                                       | 000                      |            |                                                  |                     |     |
| Offset:                                                                                                                                    | ? Use                                                                    | default values for qb an                             | d Em                     |            |                                                  |                     |     |
| Boring Data                                                                                                                                |                                                                          |                                                      |                          |            |                                                  |                     |     |
| Insert Layer Delete La                                                                                                                     | ayer Import/Export                                                       |                                                      |                          |            |                                                  |                     |     |
| No.                                                                                                                                        | Depth                                                                    | Soil                                                 |                          |            | Soil                                             | N. Blows            | -   |
|                                                                                                                                            | (ft)                                                                     | Туре                                                 |                          |            | Description                                      | (blow/ft)           |     |
| 1                                                                                                                                          | 0.000                                                                    |                                                      | 3                        |            | Clean Sand                                       | 7.0                 | 000 |
| 2                                                                                                                                          | 7.500                                                                    | )                                                    | 3                        |            | Clean Sand                                       | 38.0                | 000 |
| 3                                                                                                                                          | 19.000                                                                   | )                                                    | 3                        |            | Clean Sand                                       | 51.0                | 000 |
| 4                                                                                                                                          | 30.000                                                                   | )                                                    | 3                        |            | Clean Sand                                       | 15.0                | 000 |
|                                                                                                                                            |                                                                          |                                                      |                          |            |                                                  |                     | Ŧ   |
| Notes                                                                                                                                      |                                                                          |                                                      |                          |            |                                                  |                     |     |
| <ol> <li>Soil Types are as follows: 1. Pla</li> <li>Depths are relative to ground</li> <li>Soil Description and 5100 procession</li> </ol> | astic clay; 2. Clay and silty sand;<br>surface elevation. The first laye | 3. Clean sand; 4. Limest<br>r must have a depth of ( | one, very shelly :<br>). | and; 5. V  | oid, final layer, no capacity.                   |                     |     |
| 3. Soll Description and E100 are                                                                                                           | not editable fields in the above                                         | e table, and are NOT use                             | d in the analysis        | . They are | imported fields when using the database, to help | assign a soli type. |     |
|                                                                                                                                            |                                                                          | C                                                    | К                        | Cancel     |                                                  |                     |     |

Figure: 2.1.d "Fictitious Layer, A"

No fictitious layers exist in Figure: 2.1.d. Instead, the entire boring log is one single layer, with four different blowcounts, depending on the depth. The first blowcount change occurs at a depth of 7.5 feet, where the blowcount changes from 7 to 38. To insert fictitious layers, this 7.5 foot deep section is divided into 3 smaller sections, each 2.5 feet in depth. Each 2.5 foot section has a blowcount of 7. Between each 2.5 foot section, a soil layer with a different type is inserted, with a width of 0.00 feet, and a blowcount of 0.00. A fictitious layer is inserted at depths of 2.5 feet and 5.0 feet. Because the soil type of the given layer is sand, a clay layer is inserted as the fictitious layer.

 $\times$ 

| 💼 Boring Log |
|--------------|
|--------------|

| Boring Identification                | Additiona                             | I Options                       |                                       |                                         |                       |   |
|--------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|-----------------------|---|
| Boring Date:                         | Ground S                              | Surface Elevation: 0.000        | (ft)                                  |                                         |                       |   |
| Boring Number:                       | Blow                                  | count is obtained using autor   | natic hammer                          |                                         |                       |   |
| Station Number:                      | Correctio                             | on Factor: 1.000                |                                       |                                         |                       |   |
| Offset:                              | ? Use d                               | lefault values for qb and Em    |                                       |                                         |                       |   |
| Boring Data                          |                                       |                                 |                                       |                                         |                       |   |
| Insert Layer Delete La               | ayer Import/Export                    |                                 |                                       |                                         |                       |   |
| No.                                  | Depth                                 | Soil                            | 2                                     | ioil                                    | N. Blows              | - |
|                                      | (ft)                                  | Туре                            | Desc                                  | ription                                 | (blow/ft)             |   |
| 1                                    | 0.000                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | D |
| 2                                    | 2.500                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | D |
| 3                                    | 2.500                                 |                                 | 1                                     | Plastic Clay                            | 0.00                  | D |
| 4                                    | 2.500                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | D |
| 5                                    | 5.000                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | D |
| 6                                    | 5.000                                 |                                 | 1                                     | Plastic Clay                            | 0.00                  | D |
| 7                                    | 5.000                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | D |
| 8                                    | 7.500                                 |                                 | 3                                     | Clean Sand                              | 7.00                  | 0 |
|                                      |                                       |                                 |                                       |                                         |                       |   |
| Notes                                |                                       |                                 |                                       |                                         |                       |   |
| 1. Soil Types are as follows: 1. Pla | astic clay; 2. Clay and silty sand; 3 | 3. Clean sand; 4. Limestone, ve | ry shelly sand; 5. Void, final layer, | no capacity.                            |                       |   |
| 2. Depths are relative to ground     | surface elevation. The first layer    | must have a depth of 0.         |                                       | de colore colore de la deserva de la de |                       |   |
| 3. Soil Description and E100 are     | not editable fields in the above      | table, and are NOI used in th   | e analysis. They are imported fiel    | ds when using the database, to hel      | p assign a soil type. |   |
|                                      |                                       |                                 |                                       |                                         |                       |   |
|                                      |                                       | OK                              | Cancel                                |                                         |                       |   |
|                                      |                                       | JK                              | Concer                                |                                         |                       |   |

Figure: 2.1.e "Fictitious Layer, B"

This process is repeated for the other sections of the sand layer, between 7.5 and 19 feet, and between 19 and 30 feet.

#### **CRITICAL DEPTH CORRECTIONS**

The concept of critical depth is used in both the end bearing and side friction calculations. The ultimate end bearing capacity of a pile cannot be fully mobilized with the bearing layer until the pile tip reaches a critical depth/width ratio (D/B), where D is the depth of embedment in the bearing layer and B is the pile width. The bearing layer is the soil layer in which the pile tip is embedded. The following D/B ratios are used in FB-Deep; these have been modified from those shown in the original RB-121 study.

 $\times$ 

| Soil Type | Soil Description            | Critical Depth Ratio (D/B) |
|-----------|-----------------------------|----------------------------|
| 1         | Plastic Clay                | 2                          |
| 2         | Clay and Silty Sand         | 3                          |
| 3         | Clean Sands                 |                            |
|           | (N=12 or less)              | 6                          |
|           | (N=30 or less)              | 9                          |
|           | (N>30)                      | 12                         |
| 4         | Limestone, Very Shelly Sand | 6                          |

When the actual depth of embedment is less than the critical depth and when the bearing layer is stronger than the overlying layer, a correction (reduction) is applied to the unit end bearing capacity. The corrected unit end bearing value is determined by interpolating between the bearing capacity at the top of the bearing layer and the bearing capacity at the pile tip according to the following equation:

$$q = q_{LC} + \frac{D_A}{D_C} (q_T - q_{LC})$$

where:

q = Corrected unit end bearing @ pile tip  $q_{LC}$  = Unit end bearing at layer change  $q_T$  = Uncorrected unit end bearing @ pile tip  $D_A$  = Actual embedment in bearing layer  $D_C$  = Critical depth of embedment+

If the pile tip embedment in the bearing layer is less than the critical depth and the overlying layer is weaker than the bearing layer, the side friction in the bearing layer is corrected (reduced) in accordance with the following equation:

$$CSFBL = \frac{SFBL}{q_T} \left[ q_{LC} + \frac{D_A}{2D_C} (q_T - q_{LC}) \right]$$

where:

CSFBL = Corrected side friction in the bearing layer

SFBL = Uncorrected side friction in the bearing layer  $q_T$ ,  $q_{LC}$ ,  $D_A$ ,  $D_C$  as previously defined

If the pile tip embedment in the bearing layer is greater than the critical depth and when the overlying layer is weaker than the bearing layer, the skin friction between the top of the bearing layer and the critical depth is corrected (reduced) according to the following equation:

$$CSFACD = \frac{USFACD}{q_{CD}} \left[ q_{LC} + 0.5 \left( q_{CD} - q_{LC} \right) \right]$$

where:

CSFACD = Corrected side friction in the bearing layer from the top of the bearing layer to the critical depth USFACD = Uncorrected side friction from the top of the bearing layer to the critical depth  $q_{CD}$  = Unit end bearing at critical depth

q<sub>LC</sub> = as previously defined

No corrections are applied when the overlying layer is stronger than the bearing layer.

### 2.2 CPT

- 1. Schmertmann
- 2. <u>UF</u>
- 3. <u>LCPC</u>
- 4. CPT Modeling

### 2.2.1 Schmertmann

This method was first proposed by Schmertmann in 1978. It uses both tip resistance and sleeve friction to predict pile capacity. The pile's unit tip capacity is calculated by the minimum path rule shown in Figure: 2.2.a. Schmertmann set an upper limit of 150 tsf for the unit tip capacity.





The pile's unit skin friction:

 $f_s = \alpha_c \bullet f_{sa} \le 1.2 \text{ tsf}$ 

In clay:

where:  $\alpha_c$  is a function of f<sub>sa</sub> and pile material, as shown in Figure: 2.2.b, and Figure: 2.2.c.

f<sub>sa</sub> ≤ 1.2 tsf

$$Q_{s} := \alpha_{s} \cdot \left( \sum_{y=0}^{8D} \frac{y}{8D} \cdot f_{sa} \cdot A_{s} + \sum_{y=8D}^{L} f_{sa} \cdot A_{s} \right)$$

In sand:

where:  $\alpha_s$  is a function of pile depth to width ratio and pile material as shown in Figure: 2.2.d, and Figure: 2.2.e.



Figure: 2.2.b Design curve for concrete pile side friction in clay (Schmertmann method)



Figure: 2.2.c Design curve for steel pile side friction in clay (Schmertmann method)



Figure: 2.2.d Design curve for concrete pile side friction in sand (Schmertmann method)



Figure: 2.2.e Design curve for steel pile side friction in sand (Schmertmann method)

### 2.2.2 UF

The UF method uses the following equation to estimate the ultimate pile unit tip resistance,  $q_t$ , from the CPT tip resistance,  $q_c$ :

 $q_t = k_b \cdot q_{ca}$  (tip) = 150 tsf

where,

 $k_b$  is a factor that depends on the soil type as shown in Table: 2.2.a. The soil type was determined by simplified soil classification chart for standard electronic friction cone (Robertson et al, 1986) using CPT tip resistance and sleeve friction. Soil cementation was determined by SPT samples, DTP tip2/tip1 ratio or SPT qc/N ratio (>10).

q<sub>ca</sub> (tip): the average CPT tip resistance, which is calculated as follows:

 $q_{ca}$  (tip) = ( $q_{ca above} + q_{ca below}$ ) / 2

 $q_{ca above}$ : average  $q_c$  measured from the tip to 8 • D above the tip;

q<sub>ca below</sub> : average q<sub>c</sub> measured from the tip to 3•D below the tip for sand or 1•D below the tip for clay;

Impose the condition:  $q_{ca above} = q_{ca below'}$  which means if  $q_{ca above} = q_{ca below'}$  let  $q_{ca}$  (tip) be equal to  $q_{ca}$  below.

The UF method uses the following equation to estimate the ultimate skin friction resistance of the pile,  $f_{s}$ , from the CPT tip resistance,  $q_c$ :

 $f_s = q_{ca}(side) \cdot 1.25 / F_s = 1.2 tsf$ 

### where,

 $F_s$ : friction factor that depends on the soil type as shown in Table: 2.2.b. Figure: 2.2.f was used to determine the relative density of sand and the following criterion was used to determine the sand state: loose sand (R.D. < 40 %), medium dense sand (40 % < R.D. < 70 %), and dense sand (R.D. > 70 %).  $q_{ca}$ (side) : the average  $q_c$  within the calculating soil layers along the pile.

Table: 2.2.a Ultimate unit tip resistance factor k b

| Well Cemented Sand | Lightly Cemented Sand | Gravel | Sand | Silt | Clay |
|--------------------|-----------------------|--------|------|------|------|
| 0.1                | 0.15                  | 0.35   | 0.4  | 0.45 | 1.0  |

## Table: 2.2.b Ultimate unit skin friction empirical factor, F<sub>s</sub>

| Well     | Lightly  | Gravel and | Medium     | Loose | Silt, Sandy  | Clay |
|----------|----------|------------|------------|-------|--------------|------|
| Cemented | Cemented | Dense Sand | Dense Sand | Sand  | Clay, Clayey |      |
| Sand     | Sand     |            |            |       | Sand         |      |
| 300      | 250      | 200        | 150        | 100   | 60           | 50   |



Figure: 2.2.f Relative density relationship for N.C. moderately compressible, uncemented, unaged quartz sands (after Baldi et al, 1986)

# 2.2.3 LCPC

The LCPC method (1982) only uses cone tip resistance for predicting axial pile capacity. It was proposed by Bustamante and Gianeselli for the French Highway Department after the study of 197 piles in Europe. It is also called the French method.

The pile's unit tip capacity:

 $q_t = k_b \cdot q_{eq}$  (tip)

where,

q<sub>eq</sub> (tip) is the average of tip resistance within 1.5•D above and 1.5•D below the pile tip after eliminating abnormal data (out of the range of ±30% of the average value);

k<sub>b</sub> used by the program is a function of soil and pile type and can be found from Table: 2.2.c. The pile's unit skin friction is obtained by first noting pile type (Table: 2.2.d), then determining the Curve No. from Table: 2.2.e, Table: 2.2.f and Table: 2.2.g, and finally looking at Figure: 2.2.g, Figure: 2.2.h, and Figure: 2.2.i.

| <u>Soil</u><br>Type | <u>Bored</u><br>Piles | <u>Driven</u><br>Piles |
|---------------------|-----------------------|------------------------|
| Clay-Silt           | 0.375                 | 0.600                  |
| Sand-<br>Gravel     | 0.150                 | 0.375                  |
| Chalk               | 0.200                 | 0.400                  |

Table: 2.2.c Bearing factors k<sub>b</sub> for the LCPC Method



Figure: 2.2.g Ultimate skin friction curves for clay and silt from the LCPC method



Figure: 2.2.h Ultimate skin friction curves for sand and gravel from the LCPC method



Figure: 2.2.i Ultimate skin friction curves for chalk from the LCPC method

| Fable: 2.2.d Pil | e type from | the LCPC Method |
|------------------|-------------|-----------------|
|------------------|-------------|-----------------|

|                    |       | -                                                                                |
|--------------------|-------|----------------------------------------------------------------------------------|
| Pile type          |       | Descriptions                                                                     |
| 1. FS drilled shaf | ft    | Installed without supporting the soil with drilling mud. Applicable only for     |
| with no drilling n | nud   | cohesive soils above the water table.                                            |
| 2. FB drilled shat | ft    | Installed using mud to support the sides of the hole. Concrete is poured from    |
| with drilling mud  | 1     | the bottom up, displacing the mud.                                               |
| 3. FT drilled shaf | ft    | Drilled within the confinement of a steel casing. As the casing is retrieved,    |
| with casting (FTU  | U)    | concrete is poured in the hole.                                                  |
| 4. FTC drilled sh  | iaft, | Installed using a hollow stem continuous auger having a length at least equal to |
| hollow auger (au   | ger   | the proposed pile length. The auger is extracted without turning while,          |
| cast piles)        | -     | simultaneously, concrete is injected through the auger stem.                     |
| 5. FPU Pier        |       | Hand excavated foundations. The drilling method requires the presence of         |
|                    |       | workers at the bottom of the excavation. The sides are supported with            |
|                    |       | retaining elements or casing.                                                    |
| 6. FIG Micropile   | type  | Drilled pile with casing. Diameter less than 250 mm (10 in). After the casing    |
| I (BIG)            |       | has been filled with concrete, the top of the casing is plugged. Pressure is     |
|                    |       | applied inside the casing between the concrete and the plug. The casing is       |
|                    |       | recovered by maintaining the pressure against the concrete.                      |
|                    |       |                                                                                  |
| 7. VMO screwed     | l-in  | Not applicable for cohesionless or soils below water table. A screw type tool    |
| piles              |       | is placed in front of a corrugated pipe which is pushed and screwed in place.    |
|                    |       | The rotation is reversed for pulling out the casing while concrete is poured.    |
| 8. BE driven pile  | es,   | - Pile piles 150 mm (6 in) to 500 mm (20 in) external diameter.                  |
| concrete coated    |       | - H piles Caissons made of 2, 3, or 4 sheet pile sections.                       |
|                    |       | The pile is driven with an oversized protecting shoe. As driving proceeds,       |
|                    |       | concrete is injected through a hose near the oversized shoe producing a coating  |
|                    |       | around the pile.                                                                 |
| 9. BBA driven      |       | Reinforced or prestressed concrete piles installed by driving or vibrodriving.   |
| prefabricated pile | es    |                                                                                  |
| 10. BM steel driv  | 7en   | Piles made of steel only and driven in place.                                    |
| piles              |       | - H piles Pipe piles Any shape obtained by welding sheet-pile sections.          |
| 11. BPR prestres   | sed   | Made of hollow cylinder elements of lightly reinforced concrete assembled        |
| tube pile          |       | together by prestressing before driving. Each element is generally 1.5 to 3 m    |
|                    |       | (4-9 ft) long and 0.7 to 0.9 m (2-3 ft) in diameter. The thickness is            |
|                    |       | approximately 0.15 m (6 in). The piles are driven open ended.                    |
| 12 BER driven n    | nile  | Driving is achieved through the bottom concrete plug. The casing is pulled out   |
| hottom concrete    | nlua  | while low shimn concrete is compacted in it                                      |
| 1 SOMOTH CONCICLE  | Pro-B | wine row stamp concrete is compacted in it.                                      |

| 13. BMO driven        | A plugged tube is driven until the final position is reached. The tube is filled  |
|-----------------------|-----------------------------------------------------------------------------------|
| piles, molded         | with medium slump concrete to the top and the tube is extracted.                  |
| 14. VBA concrete      | Pile is made of cylindrical concrete elements prefabricated or cast-in-place, 0.5 |
| piles, pushed-in      | to 2.5 m (1.5 to 8 ft) long and 30 to 60 cm (1 to 2 ft) in diameter. The          |
|                       | elements are pushed in by a hydraulic iack.                                       |
| 15. VME steel piles,  | Piles made of steel only are pushed in by a hydraulic jack.                       |
| pushed-in             |                                                                                   |
| 16. FIP micropile     | Drilled pile < 250 mm (10 in) in diameter. The reinforcing cage is placed in      |
| type II               | the hole and concrete placed from bottom up.                                      |
| 17. BIP high pressure | Diameter > 250 mm (10 in). The injection system should be able to produce         |
| injected pile, large  | high pressures.                                                                   |
| diameter              |                                                                                   |

Table: 2.2.e Curve No. for clay and silt from the LCPC Method

| Curre  | an Arafi | Dilatura         | Comments on insertion procedure                                                                                                                   |
|--------|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| number | dc (ksi) | File type        | Comments on insertion procedure                                                                                                                   |
| 1      | < 14.6   | 1-17             | - Very probable values when using tools without teeth or with                                                                                     |
|        | > 14.6   | 1, 2             | oversized blades and where a remolded layer of material can be<br>deposited along the sides of the drilled hole. Use these values                 |
|        |          |                  | also for deep holes below the water table where the hole must<br>be cleaned several times. Use these values also for cases when                   |
|        |          |                  | the relaxation of the sides of the hole is allowed due to incidents                                                                               |
|        |          |                  | previous conditions, experience shows, however, that qs can be                                                                                    |
|        |          |                  | between curve 1 and 2; use an intermediate value of q, if such value is warranted by a load test.                                                 |
| 2      | > 25.1   | 4, 5, 8,<br>9 10 | - For all steel piles, experience shows that in plastic soils, q <sub>s</sub> is often as low as curve 1; therefore, use curve 1 when no previous |
|        |          | 11, 13,          | load test is available. For all driven concrete piles use curve 3                                                                                 |
|        |          | 14, 15           | in low plasticity soils with sand or sand and gravel layers or containing boulders and when $q_c > 52.2$ ksf.                                     |
|        | > 25.1   | 7                | - Use these values for soils where $q_c < 52.2$ ksf and the rate of                                                                               |
|        |          |                  | penetration is slow; otherwise use curve 1. Also for slow penetration, when $q_c > 93.9$ ksf, use curve 3.                                        |
|        | > 25.1   | 6                | - Use curve 3 based on previous load test.                                                                                                        |
|        | > 25.1   | 1, 2             | - Use these values when careful method of drilling with an                                                                                        |
|        |          |                  | auger equipped with teeth and immediate concrete pouring is<br>used. In the case of constant supervision with cleaning and                        |
|        |          |                  | grooving of the borehole walls followed by immediate concrete pouring, for soils of q <sub>e</sub> > 93.9 ksf, curve 3 can be used.               |
|        | > 25.1   | 3                | - For dry holes. It is recommended to vibrate the concrete after                                                                                  |
|        |          |                  | taking out the casing. In the case of work below the water table,<br>where pumping is required and frequent movement of the                       |
|        |          |                  | casing is necessary, use curve 1 unless load test results are available.                                                                          |
|        |          |                  |                                                                                                                                                   |
| 3      | > 25.1   | 12               | - Usual conditions of execution as described in DTP 13.2                                                                                          |
|        | < 41.8   |                  |                                                                                                                                                   |
| 5      | > 14.8   | 16, 17           | - In the case of injection done selectively and repetitively at low flow rate it will be possible to use curve 5, if it is justified by           |
|        |          |                  | previous load test.                                                                                                                               |

| Curve  | ac (ksf)  | Pile type           | Comments on insertion procedure                                  |
|--------|-----------|---------------------|------------------------------------------------------------------|
| number | 40 (1001) | 1100900             |                                                                  |
| 1      | ~ 72 1    | 2.4                 |                                                                  |
|        | < 75.1    | 6 15                |                                                                  |
|        |           | C1-0                |                                                                  |
| 2      | > 73.1    | 6,7,                | - For fine sands. Since steel piles can lead to very small       |
|        |           | 9 - 15              | values of qs in such soils, use curve 1 unless higher values can |
|        |           |                     | be based on load test results. For concrete piles, use curve 2   |
|        |           |                     | for fine sands of q <sub>c</sub> > 156.6 ksf.                    |
|        |           |                     |                                                                  |
|        | > 104.4   | 2,3                 | - Only for fine sands and bored piles which are less than 30m    |
|        |           |                     | (100 ft) long. For piles longer than 30 m (100 ft) in fine sand, |
|        |           |                     | q₅ may vary between curves 1 and 2. Where no load test data      |
|        |           |                     | is available, use curve 1.                                       |
|        |           |                     |                                                                  |
|        | > 104.4   | 4                   | - Reserved for sands exhibiting some cohesion.                   |
| 2      | S 156.6   | 67                  | East a second second as second as the East as second as it as    |
| 2      | - 100.0   | 0, /,               | - For coarse gravely sand or gravel only. For concrete piles,    |
|        |           | 9 - 11,<br>12 15 17 | use curve 4 if it can be justified by a load test.               |
|        |           | 15-15,17            |                                                                  |
|        | S 156 6   | 2.2                 | For secret growelly, and or growel and bared pilos loss then     |
|        | - 100.0   | 2, 5                | - For coarse gravely sand or gravel and bored piles less than    |
|        |           |                     | 50 m (100 m) long.                                               |
|        |           |                     | For gravel where $a > 83.5$ left use curve 4                     |
|        |           |                     | - 1.01 graves where $q_c > 0.5$ Ksi, use curve 4.                |
| 4      | > 156.6   | 8, 12               | - For coarse gravelly sand and gravel only.                      |
|        |           |                     |                                                                  |
| 5      | 5 104 4   | 16 17               | The of values higher than curve 5 is accentable if based on      |
|        | - 104.4   | 10, 17              | load test                                                        |
|        |           |                     | 10 ag 1031.                                                      |

Table: 2.2.f Curve No. for Sand and Gravel from LCPC Method



| Curve<br>number | q <sub>e</sub><br>(ksf) | Pile type                                             | Comments on insertion procedure                                                                                                                                                                                                                                                                                                                                |
|-----------------|-------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | <62.6                   | 1, 2, 3, 4, 6, 7, 8, 9,<br>10, 11, 12, 13, 14, 1<br>5 |                                                                                                                                                                                                                                                                                                                                                                |
|                 | >62.6                   | 7, 8, 9, 10, 11, 13, 1<br>4, 15                       | - Experience shows that in some chalks where q <sub>c</sub> <<br>146.1 ksf, below water table, steel or smooth<br>concrete piles may exhibit q <sub>s</sub> values as low as those<br>of curve 2. When no load test is available, use<br>curve 2 for q <sub>c</sub> < 146.1 ksf. For chalk of q <sub>c</sub> > 250.5<br>ksf use curve 4 based on a load tests. |
| 3               | >93.9<br>>93.9          | 6, 8<br>1, 2, 3, 5, 7                                 | - For bored piles above the water table and concrete<br>poured immediately after boring. For type 7 piles,<br>use a slow penetration thus creating corrugations<br>along the hole walls. Also for chalk above the<br>water table and for $q_c > 250.5$ ksf use curve 4 if<br>based on a load test.                                                             |
|                 |                         |                                                       | - Below the water table and with tools producing a<br>smooth wall or when a deposit of remolded chalk is<br>left on the walls of the hole, experience shows that<br>q <sub>s</sub> can drop to values given by curve 2. Use higher<br>values only on the basis of load tests.                                                                                  |
| 4               | >93.9<br>>93.9          | 12<br>16, 17                                          | - Higher values than curve 4 can be used if based<br>on a load test.                                                                                                                                                                                                                                                                                           |

# 2.2.4 CPT Modeling

The CPT analysis options for driven piles are available on the boring log, near the top of the screen. There are three options: CPT – UF, CPT – LCPC, and CPT – Schmertmann. Note these analysis types are only available for driven pile analysis. If drilled shaft analysis is selected, these options will become hidden, and the SPT analysis type will automatically be used.

| Sounding Identification             | Additional Option                            | ns                                         | CPT Methods                   |                                              |           |
|-------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------|-----------|
| Test Date:                          | Ground Surface                               | Elevation: 0.000 (ft)                      | • UF                          |                                              |           |
| Test Number:                        | Blow count is                                | s obtained using automatic hammer          | ⊖ LCPC                        | CPT Data                                     |           |
| Station Number:                     | Correction Facto                             | 1.000                                      | ◯ Schmertmann                 | kb & Fs Factors                              |           |
| Offset:                             | ? Use default                                | values for qb and Em                       | Phi Factor:                   | 0.660 ?                                      |           |
| oil Layering                        |                                              |                                            |                               |                                              |           |
| Insert Layer Delete L               | ayer Import/Export                           |                                            |                               |                                              |           |
| No.                                 | Depth                                        | Soil                                       |                               | Soil                                         |           |
|                                     | (ft)                                         | Туре                                       |                               | Description                                  |           |
| 1                                   | (                                            | 0.000                                      | 1                             | Pla                                          | astic Cla |
| 2                                   |                                              | 5.000                                      | 2                             | Clay and si                                  | ilty Sar  |
| 3                                   | 12                                           | 2.000                                      | 2                             | Clay and si                                  | ilty Sar  |
| 4                                   | 22                                           | 2.000                                      | 3                             | Cle                                          | ean San   |
| 5                                   | 33                                           |                                            | 3                             | Cle                                          | an San    |
|                                     |                                              |                                            |                               |                                              |           |
| lotes                               |                                              |                                            |                               |                                              |           |
| 1. Soil Types are as follows: 1. Pl | astic clay; 2. Clay and silty sand; 3. Clean | sand; 4. Limestone, very shelly sand; 5. V | oid, final layer, no capacity |                                              |           |
| 2. Depths are relative to ground    | surface elevation. The first layer must ha   | ave a depth of 0.                          |                               |                                              |           |
| 3. Soil Description and E100 are    | not editable fields in the above table, a    | nd are NOT used in the analysis. They are  | imported fields when using    | ng the database, to help assign a soil type. |           |
|                                     |                                              |                                            |                               |                                              |           |
|                                     |                                              |                                            |                               |                                              |           |

Figure: 2.2.j Soil Data Window

When a CPT method is selected, the Phi Factor will change to the default Phi Factor for the selected CPT method. However, this value can be adjusted manually by entering a value in the Phi Factor textbox. A table displaying the default values can be seen by clicking the Details button closest to the Phi Factor textbox.

To import CPT reading data, click the "Import/Export" button. Then select the menu item "Import CPT Data from File".

| 💼 Soil Data                                |                                                                                                                                 |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sounding Identification                    | Additional Options                                                                                                              |  |  |  |
| Test Date:                                 | Ground Surface Elevation: 0.000                                                                                                 |  |  |  |
| Test Number:                               | Blow count is obtained using auto                                                                                               |  |  |  |
| Station Number:                            | Correction Factor: 1.000                                                                                                        |  |  |  |
| Offset:                                    | ? Use default values for qb and Em                                                                                              |  |  |  |
| Soil Layering<br>Insert Layer Delete Layer | Import/Export                                                                                                                   |  |  |  |
| No.                                        | Upload Soil Data to Database                                                                                                    |  |  |  |
|                                            | Download Soil Data from Database<br>Save Soil Data to XML File<br>Retrieve Soil Data from XML File<br>Import CPT Data from File |  |  |  |
| 1                                          |                                                                                                                                 |  |  |  |
|                                            |                                                                                                                                 |  |  |  |
| 2                                          |                                                                                                                                 |  |  |  |
|                                            | Import CPT Data from File                                                                                                       |  |  |  |
| 3                                          | Import CPT Data from File<br>Save CPT Data to File                                                                              |  |  |  |
| 3 4                                        | Import CPT Data from File<br>Save CPT Data to File<br>22.000                                                                    |  |  |  |

Figure: 2.2.k Import CPT Data

Imported data can be of two forms: text files (.txt extension), and excel files (.xls extension). It is important to note that the imported data need be in the correct units used by FB-Deep. The program's English units are as follows: Depth – feet, qt (tsf), fs (tsf); The program's Metric units are as follows: Depth (meters), qt (MN/m2), fs (kN/m2). FB-Deep requires that corrected tip resistance, qt, be inputted for piezometric cones.

Imported data must be in the correct format to import successfully. Text File format is as follows: four columns of data, in the following order: Depth, qt, fs, and Friction Ratio. Column headings are optional. Readings must be on consecutive lines. Comment lines and blank lines are allowed, above the lines of reading data. Here is an example of the text file format:

| Depth   | qt      | fs     | Friction Ratio |
|---------|---------|--------|----------------|
| 0.6560  | 15.3720 | 0.3280 | 2.1300         |
| 1.3120  | 23.5590 | 0.4510 | 1.9100         |
| 1.9690  | 25.6170 | 0.4100 | 1.6000         |
| 2.6250  | 24.5830 | 0.4300 | 1.7500         |
| 3.2810  | 28.6870 | 0.5330 | 1.8600         |
| 3.9370  | 27.6630 | 0.4410 | 1.5900         |
| 4.5930  | 20.4890 | 0.3070 | 1.5000         |
| 5.2490  | 23.5590 | 0.3790 | 1.6100         |
| 5.9060  | 32.7810 | 0.5740 | 1.7500         |
| 6.5620  | 30.7340 | 0.6150 | 2.0000         |
| 7.2180  | 26.6400 | 0.3380 | 1.2700         |
| 7.8740  | 32.7810 | 0.4710 | 1.4400         |
| 8.5300  | 23.5590 | 0.3180 | 1.3500         |
| 9.1860  | 30.7340 | 0.3280 | 1.0700         |
| 9.8430  | 28.6870 | 0.4410 | 1.5400         |
| 10.4990 | 33.8040 | 0.4610 | 1.3600         |
| 11.1550 | 29.7100 | 0.4510 | 1.5200         |
| 11.8110 | 26.6400 | 0.3280 | 1.2300         |
| 12.4670 | 30.7340 | 0.3380 | 1.1000         |
| 13.1230 | 35.8610 | 0.3480 | 0.9700         |
| 13.7800 | 37.9080 | 0.3280 | 0.8650         |
| 14.4360 | 34.8270 | 0.5530 | 1.5900         |
| 15.0920 | 15.3720 | 0.5330 | 3.4700         |
| 15.7480 | 9.2210  | 0.5020 | 5.4400         |
| 16.4040 | 5.1170  | 0.2660 | 5.2000         |
| 17.0600 | 4.0940  | 0.2560 | 6.2500         |
| 17.7170 | 3.5820  | 0.2150 | 6.0000         |
| 18.3730 | 4.0940  | 0.2360 | 5.7600         |
| 19.0290 | 4.6050  | 0.2870 | 6.2300         |
| 19.6850 | 6.6630  | 0.4000 | 6.0000         |
| 20.3410 | 5.6390  | 0.3070 | 5.4400         |
| 20.9970 | 5.6390  | 0.2660 | 4.7200         |
| 21.6540 | 5.1170  | 0.3070 | 6.0000         |
| 22.3100 | 7.1740  | 0.4410 | 6.1500         |
| 22.9660 | 7.1740  | 0.4510 | 6.2900         |
| 23.6220 | 6.1510  | 0.3590 | 5.8400         |
| 24.2780 | 8.7090  | 0.5220 | 5.9900         |
| 24.9340 | 7.1740  | 0.3890 | 5.4200         |

The Excel spreadsheet format is as follows: four columns of data, in the following order: Depth, qt, fs, and Friction Ratio. The following column headings MUST be used: Depth, qt, fs, and FR. Readings must be on consecutive lines. The worksheet must be named "CPTdata". Here is an example of the spreadsheet (.xls) file format:

|     | A       | В          | С          | D     |
|-----|---------|------------|------------|-------|
| 1   | DEPTH   | qt         | fs         | FR    |
| 2   |         |            |            |       |
| 3   | 0.05    | 3.50       | 17.00      | 0.48  |
| 4   | 0.10    | 3.91       | 22.00      | 0.55  |
| 5   | 0.15    | 4.33       | 27.00      | 0.61  |
| 6   | 0.20    | 4.55       | 30.00      | 0.65  |
| 7   | 0.25    | 4.69       | 39.00      | 0.83  |
| 8   | 0.30    | 4.82       | 55.00      | 1.14  |
| 9   | 0.35    | 5.28       | 53.00      | 1.01  |
| 10  | 0.40    | 5.85       | 50.00      | 0.85  |
| 11  | 0.45    | 5.54       | 47.00      | 0.84  |
| 12  | 0.50    | 4.88       | 35.00      | 0.72  |
| 13  | 0.55    | 4.62       | 37.00      | 0.80  |
| 14  | 0.60    | 3.90       | 34.00      | 0.87  |
| 15  | 0.65    | 3.59       | 33.00      | 0.91  |
| 16  | 0.70    | 3.37       | 31.00      | 0.90  |
| 17  | 0.75    | 2.99       | 29.00      | 0.97  |
| 18  | 0.80    | 2.65       | 29.00      | 1.08  |
| 19  | 0.85    | 2.40       | 28.00      | 1.16  |
| 20  | 0.90    | 2.07       | 27.00      | 1.32  |
| 21  | 0.95    | 1.84       | 26.00      | 1.42  |
| 22  | 1.00    | 1.77       | 24.00      | 1.38  |
| 23  | 1.05    | 1.75       | 20.00      | 1.15  |
| 24  | 1.10    | 1.70       | 20.00      | 1.15  |
| 25  | 1.15    | 1.63       | 20.00      | 1.21  |
| 26  | 1.20    | 1.57       | 20.00      | 1.26  |
| 27  | 1.25    | 1.57       | 19.00      | 1.23  |
| 28  | 1.30    | 1.56       | 20.00      | 1.27  |
| 29  | 1.35    | 1.62       | 20.00      | 1.20  |
| 30  | 1.40    | 1.76       | 22.00      | 1.25  |
| 31  | 1.45    | 1.94       | 24.00      | 1.24  |
| 32  | 1.50    | 2.06       | 24.00      | 1.16  |
| 33  | 1.55    | 2.46       | 24.00      | 1.39  |
| 34  | 1.60    | 2.55       | 28.00      | 1.10  |
| 35  | 1.65    | 2.25       | 25.00      | 1.09  |
| 36  | 1.70    | 2.27       | 24.00      | 1.05  |
| 37  | 1.75    | 2.23       | 23.00      | 1.02  |
| H 4 | ► ► \CP | Tdata / Sh | eet2 / She | et3 / |

To view the imported data, click the "CPT Data" button on the Soil Data screen. This launches the CPT Data screen (shown here).

#### CPT Data

| Reading |           |            |       | Friction ^  | Tip Resistance Friction Ratio                                                                         |
|---------|-----------|------------|-------|-------------|-------------------------------------------------------------------------------------------------------|
| Number  | Depth     | qt         | fs    | Ratio       |                                                                                                       |
|         | (ft)      | (tsf)      | (tsf) | (%)         |                                                                                                       |
| 1       | 0.160     | 16.240     | 0.192 | 1.180       | 10 10                                                                                                 |
| 2       | 0.330     | 22.760     | 0.346 | 1.520       |                                                                                                       |
| 3       | 0.490     | 37.910     | 0.401 | 1.060       | 20 20 20                                                                                              |
| 4       | 0.660     | 111.550    | 0.639 | 0.573       |                                                                                                       |
| 5       | 0.820     | 155.970    | 0.970 | 0.622       | 30 30                                                                                                 |
| 6       | 0.980     | 153.870    | 1.250 | 0.812       | € <del>*</del>                                                                                        |
| 7       | 1.150     | 148.720    | 1.381 | 0.929       |                                                                                                       |
| 8       | 1.310     | 160.480    | 1.448 | 0.902       |                                                                                                       |
| 9       | 1.480     | 178.700    | 1.555 | 0.870       | 50 50 50 2                                                                                            |
| 10      | 1.640     | 191.500    | 1.656 | 0.865       |                                                                                                       |
| 11      | 1.800     | 185.060    | 1.811 | 0.979       | 60 50                                                                                                 |
| 12      | 1.970     | 181.300    | 1.956 | 1.080       |                                                                                                       |
| 13      | 2.130     | 181.040    | 2.049 | 1.130       |                                                                                                       |
| 14      | 2.300     | 183.530    | 2.085 | 1.140       |                                                                                                       |
| 15      | 2.460     | 186.870    | 1.990 | 1.060       | 0 70 140 210 280 350 0 5 10 15                                                                        |
| 16      | 2.620     | 192.740    | 1.957 | 1.020       | qt (tsf) fs / qt (%)                                                                                  |
| 17      | 2.790     | 196.370    | 2.014 | 1.030       |                                                                                                       |
| 18      | 2.950     | 196.810    | 2.036 | 1.030       | Customize Print Customize Print                                                                       |
| 19      | 3.120     | 195.000    | 2.025 | 1.040       | Notes                                                                                                 |
| 20      | 3.280     | 191.280    | 1.487 | 0.777       | 1. All CPT Data is Electrical Cone Data.                                                              |
| 21      | 3.440     | 186.170    | 1.626 | 0.873       | 2. Friction Ratio is automatically calculated when 'Sort' or 'Udpate Plot' is clicked.                |
|         |           |            |       | · · · · · · | 3. To show cursor position on a plot, hold down the left mouse button.                                |
| I       | nsert Row | Delete Row | Sor   | t           | 4. To match a curve point with a CPT Table record, click on a point on the qt or Friction Ratio plot. |

Figure: 2.2.I CPT Data Window

Once imported, the data can be adjusted in the table. Clicking the "Sort" button will arrange the readings according to depth. Clicking "Update Plot" will redraw the plot windows using the table data. Additional rows can be added to the table by clicking "Insert Row". The inserted row will be positioned immediately after the row that is currently selected (highlighted) in the table. Clicking "Print" will print a screenshot of the entire CPT screen. Because readings often number in the hundreds, most readings will not be visible without scrolling. To quickly find a reading in the table, simply click on the desired depth in either of the plot windows. The associated reading will automatically be scrolled to, and become selected. When saving the input file (.spc), any existing CPT readings will be saved to a text file (.txt) of the same name. This is done so the readings can be easily viewed.

 $\times$ 

### **CPT Factors**

#### **CPT** Factors

| 2011  | Depth  | Soil | kb          | Fs                    | ^ | Soil Description              | kb      |
|-------|--------|------|-------------|-----------------------|---|-------------------------------|---------|
| Layer | (ft)   | Туре | (Tip Coeff) | (Side Friction Coeff) |   | Clay                          | 1.000   |
| 1     | 0.000  | 1    | 1.000       | 50.000                |   | Silt                          | 0.450   |
| 2     | 5.000  | 2    | 0.450       | 60.000                |   | Sand                          | 0.400   |
| 3     | 12.000 | 2    | 0.450       | 60.000                |   | Gravel                        | 0.350   |
| 4     | 22.000 | 3    | 0.400       | 150.000               |   | Lightly Cemented Sand         | 0.150   |
| 5     | 35.000 | 3    | 0.400       | 150.000               |   | <                             | 110     |
|       |        |      |             |                       |   | Soil Description              | Fs      |
|       |        |      |             |                       |   | Clay                          | 50.000  |
|       |        |      |             |                       |   | Silt, Sandy Clay, Clayey Sand | 60.000  |
|       |        |      |             |                       |   | Loose Sand                    | 100.000 |
|       |        |      |             |                       |   | Medium Dense Sand             | 150.000 |
|       |        |      |             |                       |   | Gravel and Dense Sand         | 200.000 |
|       |        |      |             |                       | ~ | Lightly Cemented Sand         | 250.000 |
|       |        | D    | efaults     |                       |   | Well Cemented Sand            | 300.000 |

Figure: 2.2.m CPT Factors Window

The CPT Factors Dialog is used to input kb and Fs data for each soil layer. It is launched via the "Edit Factors" button on the CPT Data dialog. Both kb and Fs values are unit-less coefficients. Only kb and Fs data may be edited on the dialog. Soil Depths and Soil Types are shown here, but can only be changed on the CPT Soil Dialog.

Click the "Defaults" button to change all kb and Fs values to default values. If the user does not use this dialog, the default values for each soil layer will automatically be assigned.

Х

The default kb values are as follows: Soil Type 1, Plastic Clay: 1.0 Soil Type 2, Clay and Silty Sand: 0.45 Soil Type 3, Clean Sand: 0.40 Soil Type 4, Limestone, Very Shelly Sand: 0.35 Soil Type 5, Void: 0.0

The default Fs values are as follows: Soil Type 1, Plastic Clay: 50.0 Soil Type 2, Clay and Silty Sand: 60.0 Soil Type 3, Clean Sand: 150.0 Soil Type 4, Limestone, Very Shelly Sand: 200.0 Soil Type 5, Void: 1000000

The three CPT analysis types are limited by the pile's section type. The table below shows what pile sections are available for each of the three CPT methods.

| Analysis    | Square | Round | Cylinder | Pipe | H-Section |
|-------------|--------|-------|----------|------|-----------|
| Schmertmann | Yes    | X     | X        | Yes  | Х         |
| UF          | Yes    | Yes   | Х        | X    | Х         |
| LCPC        | Yes    | Yes   | Yes      | Yes  | Yes       |

X-Method does not calculate capacity for that type of section

## 3 User's Guide

- 1. Units
- 2. Import SPT94 file
- 3. Boring Log/Soil Data Screen
- 4. Drilled Shafts
- 5. Driven Piles
- 6. Database
- 7. Graphical Output
- 8. Backwards Compatibility

### 3.1 Units



🗱 FB-Deep - C:\Program Files (x86)\BSI\FB-Deep\_v206\ExampleFiles\CF

The user can select to work with either the English or the Metric units systems.

For English units:

- Forces are in tons (tons).
- Lengths are in feet (ft).
- Dimensions are in inches (in).
- Unit weights are in pound per cubic foot (pcf).
- Soil stresses are in pound per square foot (psf).
- Pile stresses are in kilo-pound per square inch (ksi).

For Metric units:

- Forces are in kilo-Newton (kN).
- Lengths are in meters (m).
- Dimensions are in millimeters (mm).
- Unit weights are in kilo-Newton per cubic meters (kN/m^3).
- Soil stresses are in kilo-Pascal (kPa).
- Pile stresses are in Mega-Pascal (MPa).

# 3.2 Import SPT94/SPT97 file



💼 FB-Deep - C:\Program Files (x86)\BSI\FB-Deep\ExampleFiles\

FB-Deep allows the user to use old files created for the SPT94/SPT97 program. To do so, the user selects <File-Import SPT94 File> or <File-Import SPT97 File> from the menu. The user will be prompted to select the SPT 94/SPT 97 file.

Once the old file is selected, the program will copy the data to the latest FB-Deep program input format.

## 3.3 Boring Log Soil Data Screen

- 1. Showing Screen
- 2. Strength Reduction Factor
- 3. Soil Type
- 4. Hammer Type
- 5. Phi Factor
- 6. Station Number and Offset

# 3.3.1 Boring Log Dialog / Soil Data Screen



For SPT Analysis, the soil input screen is called the Boring Log. For CPT Analysis, the soil input screen is called the Soil Data Screen.

To display the Boring Log / Soil Data Screen, select the <Show-Boring Log> (or <Show-Soil Data Screen>) menu item or click on the corresponding on the tool bar button.

For driven-pile analysis, only the blows count is needed for the calculation for all soil types. For drilled-shaft analysis, every soil type requires different soil properties.

# 3.3.2 Boring Log / Soil Data Screen: Strength Reduction Factors

The strength reduction factors should be less than 1. The default values are 1.

The ultimate strengths of drilled shafts are reduced by the strength reduction factor. However, the load-settlement curves are not reduced.

| Srength Reduction Factor |       |  |  |
|--------------------------|-------|--|--|
| Side friction (=< 1.0):  | 1.000 |  |  |
| End bearing (=< 1.0):    | 1.000 |  |  |

# 3.3.3 Soil Type

| oring Identification               | Additiona                             | l Options                                     |                                            |                                                                          |                    |
|------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|--------------------|
| Boring Date:                       | Ground                                | Surface Elevation: 0.000                      | (ft)                                       |                                                                          |                    |
| Boring Number:                     |                                       | Blow count is obtained using automatic hammer |                                            |                                                                          |                    |
| Station Number:                    | Correctio                             | on Factor: 1.000                              |                                            |                                                                          |                    |
| Offset:                            | ? Use o                               | default values for qb and Em                  |                                            |                                                                          |                    |
| oring Data                         |                                       |                                               |                                            |                                                                          |                    |
| Insert Layer Delete La             | Depth                                 | Soil                                          |                                            | Soil                                                                     | N. Blows           |
|                                    | (ft)                                  | Туре                                          | Des                                        | cription                                                                 | (blow/ft)          |
| 1                                  | 0.000                                 | 0.000 1                                       |                                            | Plastic Clay                                                             | 0.00               |
| 2                                  | 0.000                                 | 0.000 2                                       |                                            | Clay and silty Sand                                                      | 0.00               |
| 3                                  | 0.000                                 | 0.000 3                                       |                                            | Clean Sand 0.0                                                           |                    |
| 4                                  | 0.000                                 | 0.000 4                                       |                                            | Limestone, very shelly sand                                              | 0.00               |
| 5                                  | 0.000                                 |                                               | 5                                          | Void                                                                     | 0.00               |
| 2<br>3<br>4<br>5                   | 0.000 0.000 0.000 0.000               |                                               | 2<br>3<br>4<br>5                           | Clay and silty Sand<br>Clean Sand<br>Limestone, very shelly sand<br>Void |                    |
| es                                 |                                       |                                               |                                            |                                                                          |                    |
| . Soil Types are as follows: 1. Pl | astic clay; 2. Clay and silty sand; : | 3. Clean sand; 4. Limestone, v                | very shelly sand; 5. Void, final laye      | r, no capacity.                                                          |                    |
| . Depths are relative to ground    | surface elevation. The first layer    | must have a depth of 0.                       | , , ,                                      |                                                                          |                    |
|                                    |                                       | table and are NOT used in th                  | the enclusion Theory and incomparison of G | I de when using the database to bella                                    | assign a soil type |
| 3. Soil Description and E100 are   | not editable fields in the above      | table, and are NUT used in t                  | ne analysis. They are imported fie         | aus when using the database, to help a                                   | assign a son type. |

Figure: 3.3.a Boring log Dialog

FB-Deep allows 5 soil types:

- 1. Plastic clay.
- 2. Clay and silty sand.
- 3. Clean sand.
- 4. Limestone and very shelly sand.
- 5. Void.

# 3.3.4 Hammer Type



Calculations for driven-pile capacity and drilled-shafts capacity are based on blow count readings from safety hammer. If automatic hammer is used, the user is allowed to specify a correction factor as shown in the figure.
## 3.3.5 Phi Factor

The three CPT methods used in FB-Deep all use the LRFD design methodology. This results in the use of phi factor which is multiplied by the nominal resistance to give a design resistance. The default phi factors used by FB-Deep were determined by research done at the University of Florida. For more information on these phi factors click on the link below or review the AASHTO LRFD specifications.

http://www.dot.state.fl.us/research-center/Completed\_Proj/Summary\_SMO/FDOT\_BD545\_43\_rpt.pdf

 $\times$ 

Each time a CPT method is selected, the corresponding default value will display in the Phi Factor editbox. This value can be adjusted. To view the default Phi Factor table, click the "Details" button on the Soil Data Screen.

Phi Factor Details

| CPT Method                                                  | Default Phi Factor                                             | $\sim$ |
|-------------------------------------------------------------|----------------------------------------------------------------|--------|
| UF                                                          | 0.66                                                           |        |
| LCPC                                                        | 0.47                                                           |        |
| Schmertmann                                                 | 0.43                                                           |        |
|                                                             |                                                                |        |
| 1. The above table is NOT e<br>default Phi Factors for each | ditable. It is a listing of the<br>CPT analysis type. For more |        |

## 3.3.6 Station Number and Offset

Prior to version 2.01, the Station Number and Offset were input in a single editbox. Starting in version 2.01, the station number and offset are input separately. The Station Number can have any value, including letters, numbers or characters. The offset must be numeric, to comply with the FDOT database format. The Station Offset Dialog (pictures below) explains the format of the offset.

| tation Offset Details                                                                                                                                                                                                                       | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Notes                                                                                                                                                                                                                                       |   |
| <ol> <li>To upload the Station Offset to the FDOT<br/>database, it must meet one of the following formats:<br/>'+NNN', '-NNN', or 'NNN', where 'N' is any numeric<br/>character. Decimal points are also allowed.</li> </ol>                |   |
| 2. There are no restrictions as to the number of these characters, but only one plus (+) or minus (-) sign may be used. If no sign is given, the Offset is assumed to be positive. It is also acceptable to leave the Station Offset blank. |   |
| 3. The plus $\langle + \rangle$ sign means an offset to the right; a minus $\langle - \rangle$ sign means an offset to the left.                                                                                                            |   |
| 4. Examples: +12; -20.0; 500                                                                                                                                                                                                                |   |
| Close                                                                                                                                                                                                                                       |   |

# **3.4 Drilled Shafts**

| 🔹 FB-Deep - Untitl                                                 | ed.spc           |                               |                      |                                                             |                |                  |                     |                                                     |                           |                  | - 🗆               | ×        |
|--------------------------------------------------------------------|------------------|-------------------------------|----------------------|-------------------------------------------------------------|----------------|------------------|---------------------|-----------------------------------------------------|---------------------------|------------------|-------------------|----------|
|                                                                    |                  |                               |                      | a 🗴 🛛                                                       | 1              |                  |                     |                                                     |                           |                  |                   |          |
| Units                                                              | Pile Ty<br>O Dri | rpe<br>lled Shaft<br>ven Pile | Sh<br>Ui<br>Ei<br>Si | aft Material<br>nit Weight (pcf):<br>c (ksi):<br>lump (in): |                |                  | ? C                 | Capacity Calculatic<br>Calculate capacity<br>%: 0.0 | on<br>corresponding<br>00 | to R% (100 *Sett | :lement/D):       |          |
| Project Informatio                                                 | on               | Shaft Geom                    | netry                |                                                             |                |                  |                     |                                                     |                           |                  |                   |          |
| Project Number:                                                    |                  | Insert                        | Shaft                | Insert                                                      | Range          | Genera           | te                  | Delete Shaft                                        | 5                         |                  |                   |          |
| Job Name:                                                          | _                |                               | Option               | Casing Length<br>(ft)                                       | Length<br>(ft) | Diameter<br>(in) | Bell Length<br>(ft) | Bell Diameter                                       | Min. Length               | Max. Length      | Increment<br>(ft) |          |
|                                                                    |                  | 1                             | Single               | 0.000                                                       | 0.000          | 0.000            | 0.00                | 0.000                                               | ()                        | (,               | (14)              |          |
| Engineer:                                                          |                  | 2                             | Range                | 0.000                                                       |                | 0.000            | 0.00                | 0.000                                               | 0.000                     | 0.000            | 0.000             |          |
| Water Table Eleva<br>(ft)<br>-10000.000<br>Notes<br>1. The maximum | tion             | of piles/sha                  | ifts in a ran        | nge is 100.                                                 |                |                  |                     |                                                     |                           |                  |                   | <b>y</b> |



### **Shaft Material**

Unit weight, concrete slump and Ec are used for the calculation of the contribution of the Rock layers to the Load-Settlement curve. The parameters are available only if the boring log contains rock entries

### **Section Type**

The user can choose a section type from among six options: Concrete Square, Concrete Round, Concrete Cylinder, Steel H Section, Steel Pipe Pile. Depending on the selected section type, the pile geometry grid changes to indicate the parameters required for the selected section type.

#### **Insert Pile/Range**

The user has the option to either specify a single shaft or a range of shaft lengths that have the same section properties.

For shaft range, the user specifies the maximum length, the minimum length and the increment. The program generates number of shafts with lengths starting with the minimum length and not exceeding the maximum length. When, the user enters a value for the maximum length or the minimum length, the program checks that the minimum length is not greater than the maximum length.

The number of shafts can be generated by a range is 100. As the user enters the maximum length and the minimum length, the program updates the increment, if the existing increment value results in the generation of more than 100 shafts. In this case, the increment is modified to satisfy two conditions. One is that the number of generated shafts is 100. The second is that the maximum length generated by the program is the closest to the user-defined maximum length.

If the user enters a value of the increment that generates more than 100 shafts, the program rejects this value and the user is prompted to enter a new value.

| Generate          |              |            |  |
|-------------------|--------------|------------|--|
| No. of rows to b  | e generated: | 1 <= 49    |  |
| Diameter (in):    |              |            |  |
| Maximum:          | Minimum:     | Increment: |  |
| 0.000             | 0.000        | 0.000      |  |
| Length (ft):      |              |            |  |
| Single lengt      | h:           |            |  |
| Maximum:          | Minimum:     | Increment: |  |
| 0.000             | 0.000        | 0.000      |  |
| Case length (ft): | N/A:         |            |  |
| 0.000             |              |            |  |
|                   | OK           | Cancel     |  |

#### Generate

Figure: 3.4.b Generate Shafts Dialog

The Generate dialog box aids the user to generate multiple shaft records with different width. The width is set to change linearly between the first and last generated records. The user can generate multiple records of either single or range input option.

The user specifies the maximum width, the minimum width and the increment. The program generates number of records with widths starting with the minimum width and not exceeding the maximum width. When, the user enters a value for the maximum width or the minimum width, the program checks that the minimum width is not greater than the maximum width.

The maximum number of records can be generated depends on how many records already exist in the shaft geometry grid. The total number of records that can be entered in the shaft grid is 48. As the user enters the maximum width and the minimum width, the program updates the increment, if the existing increment value results in the generation of more than the maximum. In this case, the increment is modified to satisfy two conditions. One is that the number of generated shafts is equal to the maximum. The second is that the maximum width generated by the program is the closest to the user-defined maximum width.

**3.5 Driven Piles** 

| Units              | Pile Ty        | /pe                    | Analys          | is Type    | Pile Material     |           |          | Section Typ                        | De                  |                              |
|--------------------|----------------|------------------------|-----------------|------------|-------------------|-----------|----------|------------------------------------|---------------------|------------------------------|
| ● English ○ Metric | ⊙ Dri<br>● Dri | lled Shaft<br>ven Pile | © SPT<br>○ CP   | r<br>T     | Unit Weight (pcf) | : 0.0     | 00       | Concrete<br>Squar<br>Roun<br>Cylin | e<br>re<br>d<br>der | Steel<br>OH_section<br>OPipe |
| voject Informat    | on             | Pile Geomet            | ry              |            |                   |           |          |                                    |                     |                              |
| Project Number:    |                | Insert                 | Pile            | Insert Rai | nge               | Generate  | Delete   | Piles                              |                     |                              |
| loh Namer          |                | ID                     | Input           | Length     | Width             | Thickness | Pile End | Min. Length                        | Max. Length         | Increment                    |
| op ivame:          |                |                        | Option          | (ft)       | (in)              | (in)      |          | (ft)                               | (ft)                | (ft)                         |
| Engineer:          |                |                        | Single          | 0.000      | 0.000             |           |          | 0.000                              | 0.000               | 0.000                        |
|                    |                |                        |                 |            |                   |           |          |                                    |                     |                              |
|                    |                |                        |                 |            |                   |           |          |                                    |                     |                              |
|                    |                |                        |                 |            |                   |           |          |                                    |                     |                              |
|                    |                |                        |                 |            |                   |           |          |                                    |                     |                              |
| lotes              |                |                        |                 |            |                   |           |          |                                    |                     |                              |
|                    |                | of pilos (chof         | to in a range i | c 100      |                   |           |          |                                    |                     |                              |



### Analysis Type

SPT or CPT analysis method can be defined in Driven Pile model.

### **Section Type**

The user can choose a section type from among six options: Concrete Square, Concrete Round, Concrete Cylinder, Steel H Section, Steel Pipe Pile. Depending on the selected section type, the pile geometry grid changes to indicate the parameters required for the selected section type.

#### **Insert Pile/Range**

The user has the option to either specify a single pile ("**Insert Pile**") or a range ("**Insert Range**") of pile lengths that have the same section properties.

For pile range, the user specifies the maximum length, the minimum length and the increment. The program generates number of piles with lengths starting with the minimum length and not exceeding the maximum length. When, the user enters a value for the maximum length or the minimum length, the program checks that the minimum length is not greater than the maximum length.

The number of piles can be generated by a range is 100. As the user enters the maximum length and the minimum length, the program updates the increment, if the existing increment value results in the generation of more than 100 piles. In this case, the increment is modified to satisfy two conditions. One is that the number of generated piles is 100. The second is that the maximum length generated by the program is the closest to the user-defined maximum length.

If the user enters a value of the increment that generates more than 100 piles, the program rejects this value and the user is prompted to enter a new value.

| Generate         |              |            |  |
|------------------|--------------|------------|--|
| No. of rows to b | e generated: | 1 <= 48    |  |
| Width (in):      |              |            |  |
| Maximum:         | Minimum:     | Increment: |  |
| 0.000            | 0.000        | 0.000      |  |
| Length (ft):     |              |            |  |
| Single leng      | th:          |            |  |
| Maximum:         | Minimum:     | Increment: |  |
| 0.000            | 0.000        | 0.000      |  |
| N/A:             | N/A:         |            |  |
|                  |              |            |  |
|                  | OK           | Cancel     |  |

#### Generate

Figure: 3.5.b Generate Piles Dialog

The Generate dialog box aids the user to generate multiple pile records with different width. The width is set to change linearly between the first and last generated records. The user can generate multiple records of either single or range input option.

The user specifies the maximum width, the minimum width and the increment. The program generates number of records with widths starting with the minimum width and not exceeding the maximum width. When, the user enters a value for the maximum width or the minimum width, the program checks that the minimum width is not greater than the maximum width.

The maximum number of records can be generated depends on how many records already exist in the pile geometry grid. The total number of records that can be entered in the pile grid is 48. As the user enters the maximum width and the minimum width, the program updates the increment, if the existing increment value results in the generation of more than the maximum. In this case, the increment is modified to satisfy two conditions. One is that the number of generated piles is equal to the maximum. The second is that the maximum width generated by the program is the closest to the user-defined maximum width.

### 3.6 Database

- 1. Introduction to Database
- 2. Downloading Walkthrough
- 3. Uploading Walkthrough
- 4. XML Files
- 5. Troubleshooting

# **3.6.1 Introduction to Database**

The Florida Department of Transportation (FDOT), in conjunction with the University of Florida, has developed a Geotechnical Database. This database contains geotechnical laboratory data, as well as construction as-built in-situ data. FB-Deep features connectivity to this database.

A login account is required to use the database. Contact your company's technical support department to have your account created. To learn more, log on to http://fdot.ce.ufl.edu/

Currently, FB-Deep can upload and download soil data. FB-Deep cannot upload or download pile/shaft data (pile length, diameter, shape, etc), though this enhancement will be added in a future version.

# 3.6.2 Downloading Walkthrough

Downloading (importing) from the database can be accomplished through the following steps:

Go to the Boring Log screen, either by clicking the Boring Log icon, or by using the 'Boring Log' menu item under the 'Show' menu (Figure: 3.6.a)

|                                                                                                                                     |       |          | 1     |       |        |      |       |     |      |     |       |     |      |       |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-------|-------|--------|------|-------|-----|------|-----|-------|-----|------|-------|
| Ê                                                                                                                                   | ; [=  |          |       | ţ     |        |      |       | )   | Q    |     | X     | )   | 2    | 2     |
| ÷                                                                                                                                   | FB-De | ep - C:\ | Prog  | ram F | iles ( | ×86  | )\BSI | \FE | 8-De | eb, | Exam  | npl | eFil | es\Cl |
| File                                                                                                                                | Show  | Help     |       |       |        |      |       |     |      |     |       |     |      |       |
| P                                                                                                                                   | S     | oil Dat  | a Scr | een   |        |      |       |     |      |     |       |     |      |       |
| U Input Echo >> Shaft Capacity Report (brief Report) >> Shaft Capacity Report (detailed Report) >> Shaft Capacity Report (Excel) >> |       |          |       |       |        |      |       |     |      |     |       |     | cf): |       |
| 0                                                                                                                                   | Metr  | ic       |       | OD    | riven  | Pile | 9     |     |      | Slu | imp ( | in) | :    |       |

Figure: 3.6.a Opening Boring Log

When the Boring Log appears, click the 'Import/Export' button (Figure: 3.6.b). The database menu will appear. Select 'Download Soil Data from Database'.

| 💼 Soil Data               |                                    |
|---------------------------|------------------------------------|
| Sounding Identification   | Additional Options                 |
| Test Date:                | Ground Surface Elevation: 0.000    |
| Test Number:              | Blow count is obtained using auto  |
| Station Number:           | Correction Factor: 1.000           |
| Offset:                   | ? Use default values for qb and Em |
| Soil Layering             |                                    |
| Insert Layer Delete Layer | Import/Export                      |
| No.                       | Upload Soil Data to Database       |
|                           | Download Soil Data from Database   |
|                           | Save Soil Data to XML File         |
| 1                         | Retrieve Soil Data from XML File   |
| 2                         | Import CPT Data from File          |
| 3                         | Save CPT Data to File              |
| 4                         | 22.000                             |
| 5                         | 35.000                             |

Figure: 3.6.b Import/Export Soil Data

If soil data is currently in the soil table, this data will be deleted. It is therefore recommended to save the current data before beginning the download process. Click Yes.



Figure: 3.6.c Warning Message

Database Connectivity message is be displayed. Click OK.



Figure: 3.6.d Database Connectivity Message

A few seconds after choosing 'Download Soil Data from Database', a Login screen will appear (Figure: 3.6.e).



Figure: 3.6.e Database Login Dialog

Enter a User Name and Password, and click the 'OK' button. (An account is required to use the database. If you do not have an account, please contact your company's technical support). The database tree will display (Figure: 3.6.f). This can take several seconds.



Figure: 3.6.f Database Tree Display

Once the tree is visible, search for the desired soil data. The pile type and analysis type will dictate what type of soil data should be downloaded. The following describes the types and location of downloadable soil data that are currently available, given a pile type and analysis type:

Drilled Shaft, SPT Analysis: a) Shaft soil data, available under 'GML  $\rightarrow$  Bridge  $\rightarrow$  Pier  $\rightarrow$  Shaft  $\rightarrow$  Shaft\_Capacity  $\rightarrow$  Soil\_Data'. This dataset includes the following fields for each soil layer: depth, soil type, blowcount, total unit weight, undrained shear strength, unconfined compressive strength, tensile strength, end bearing, mass modulus, RQD reduction modification, shaft socket roughness, and rock recovery. All of these fields are supported by FB-Deep. The following data is also downloaded: Water Table Elevation, Boring Number, and Ground Surface Elevation. b) Rock Specimen soil data, available under 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  Lab\_Rock  $\rightarrow$  Core  $\rightarrow$  Rock\_Specimen'. This dataset includes the following fields which are supported by FB-Deep, for each soil layer: starting elevation (which is converted to a depth with respect to ground surface

elevation), dry unit weight (which is currently downloaded into the total unit weight field in FB-Deep; this will result in a conservative calculation for skin friction of sand layers below the rock layers; these rock unit weight values can be adjusted as seen fit by the user), soil description, unconfined compressive strength, tensile strength, and E100 (intact modulus). The following data is also downloaded: Station and Offset, RQD reduction modification, and rock recovery.

Driven Pile, SPT Analysis: a) Pile soil data, available under 'GML  $\rightarrow$  Bridge  $\rightarrow$  Pier  $\rightarrow$  Pile  $\rightarrow$  Pile\_Capacity  $\rightarrow$  Soil\_Data'. This dataset includes the following fields which are supported by FB-Deep, for each soil layer: depth, soil type, and blowcount. The following data is also downloaded: Boring Number, and Ground Surface Elevation. b) Soil Specimen soil data, available under 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  Lab\_Soil  $\rightarrow$  Tube  $\rightarrow$  Soil\_Specimen'. This dataset includes the following fields which are supported by FB-Deep, for each soil layer: starting elevation (which is converted to a depth with respect to ground surface elevation), soil description, undrained shear strength, total unit weight, and E100. The following data is also downloaded: Station and Offset.

Driven Pile, CPT Analysis, Schmertmann or LCPC Methods: a) SPT Soil Layer Data, available under 'GML  $\rightarrow$ Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Layer\_Data. This dataset includes the following fields for each soil layer, which are supported by FB-Deep: elevation (which is converted to a depth with respect to ground surface elevation) and soil type. The following data is also downloaded: Cone Sounding Number, Station and Offset, and Ground Surface Elevation. b) SPT Data, available under 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Data. This dataset includes the following fields for each reading, which are supported by FB-Deep: elevation (which is converted to a depth with respect to ground surface elevation), qc, and fs.

Driven Pile, CPT Analysis, UF Method: a) CPT Soil Layer Data, available under 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Layer\_Data. This dataset includes the following fields for each soil layer, which are supported by FB-Deep: elevation (which is converted to a depth with respect to ground surface elevation), soil type, kb, and Fs. . The following data is also downloaded: Cone Sounding Number, Station and Offset, and Ground Surface Elevation. b) CPT Data, available under 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Data. This dataset includes the following fields for each reading, which are supported by FB-Deep: elevation (which is converted to a depth with respect to ground surface elevation), qc, and fs.

After selecting the desired soil branch, such as 'Shaft\_Capacity' or 'Pile\_Capacity', click the 'Get Attributes' button (Figure: 3.6.g). This action isolates the soil layer data.

| 9     | FDOT Databas                                                                    | se v3.8                                                                                                              |                                                 |                                   |                                               | -                                                     |   | ] | × |
|-------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------------|---|---|---|
|       |                                                                                 | 2                                                                                                                    |                                                 | <u>ക</u>                          | <b>≣</b> 3                                    |                                                       |   |   |   |
|       | Connect                                                                         | Get Attributes                                                                                                       | Search                                          | Import                            | Project Filter                                |                                                       |   |   |   |
| 🖃 - G | ML:                                                                             |                                                                                                                      |                                                 |                                   |                                               |                                                       |   |   |   |
|       | Project Proje<br>Bridge: Bri<br>Bridge: Bri<br>Pier. Pi<br>Pier. Pi<br>Pier. Pi | ct_Number: 79180-3<br>dge_Number: 1234<br>dge_Number: 7901<br>er_Name: BENT19<br>er_Name: BENT2<br>: Pile Name: 6 As | 8514 County: [<br>-45<br>47<br>Built: true Data | Data_Locked: S                    | ubmit_By: Submit_D                            | ate:                                                  |   |   |   |
|       | ±.                                                                              | Static_LT: LoadTest                                                                                                  | Type: 1 Data                                    | Locked: Subm                      | it_By: Submit_Date:                           | 1900-01-01T00:00:00-05:00                             |   |   |   |
|       | Ls                                                                              | Splices:                                                                                                             | - /1                                            | _                                 | - / -                                         |                                                       |   |   |   |
|       | - Begin_                                                                        | Project                                                                                                              |                                                 |                                   |                                               |                                                       |   |   |   |
|       | 🗄 Subsurfac                                                                     | e:                                                                                                                   |                                                 |                                   |                                               |                                                       |   |   |   |
|       | ]-Project Proje<br>]-Project Proje                                              | ct_Number: 123 Co<br>ct_Number: TEST-I                                                                               | unty: Data_Lo<br>=BDeep County                  | cked: False Sub<br>y: Data_Locked | imit_By: uf-mikeF Sut<br>: False Submit_By: u | omit_Date: 06/27/13<br>/f-mikeF Submit_Date: 09/23/09 | Ì |   |   |
|       |                                                                                 |                                                                                                                      |                                                 |                                   |                                               |                                                       |   |   |   |
|       |                                                                                 |                                                                                                                      |                                                 |                                   |                                               |                                                       |   |   |   |
|       |                                                                                 |                                                                                                                      |                                                 |                                   |                                               |                                                       |   |   |   |

Tree Downloaded Successfully

Figure: 3.6.g Isolate the required soil boring log.

Next, click the 'Import' button.

The imported soil data will then appear in the Soil Data Table in FB-Deep (Figure: 3.6.h)

💼 Soil Data

| Sounding Identificati  | on                      |                | Additional Options             |                                |         | CPT Methods                |                                     |                     |
|------------------------|-------------------------|----------------|--------------------------------|--------------------------------|---------|----------------------------|-------------------------------------|---------------------|
| Test Date:             |                         |                | Ground Surface Elevation       | n: 0.000 (ft                   | )       | • UF                       |                                     |                     |
| Test Number:           | CPT_UF                  |                | Blow count is obtain           | ed using automatic hammer      |         | OLCPC                      | CPT Data                            |                     |
| Station Number:        |                         |                | Correction Factor:             | 1.000                          |         | ◯ Schmertmann              | kb & Fs Factors                     |                     |
| Offset:                |                         | ?              | Use default values fo          | or qb and Em                   |         | Phi Factor:                | 0.660 ?                             |                     |
| Soil Layering          |                         |                |                                |                                |         |                            |                                     |                     |
| Insert Layer           | Delete Layer            | Import/E       | xport                          |                                |         |                            |                                     |                     |
| N                      | 0.                      |                | Depth                          | Soil                           |         |                            | Soil                                | ^                   |
|                        |                         |                | (ft)                           | Туре                           |         |                            | Description                         |                     |
| 1                      | I                       |                | 0.000                          |                                | 3       |                            |                                     | Clean Sand          |
| 2                      | 2                       |                | 7.500                          |                                | 3       |                            |                                     | Clean Sand          |
| 3                      | 3                       |                | 15.000                         |                                | 2       |                            |                                     | Clay and silty Sand |
| 4                      | ţ                       |                | 19.000                         |                                | 2       |                            |                                     | Clay and silty Sand |
| 5                      | 5                       |                | 22.000                         |                                | 3       |                            |                                     | Clean Sand          |
| 6                      | ;                       |                | 31.000                         |                                | 2       |                            |                                     | Clay and silty Sand |
| 7                      | ,                       |                | 34.000                         |                                | 3       |                            |                                     | Clean Sand          |
| 8                      | 3                       |                | 44.500                         |                                | 3       |                            |                                     | Clean Sand          |
|                        |                         |                | F3 000                         |                                | 7       | 1                          |                                     | Class Canal ¥       |
| Notes                  |                         |                |                                |                                |         |                            |                                     |                     |
| 1. Soil Types are as t | follows: 1. Plastic cla | y; 2. Clay and | d silty sand; 3. Clean sand; 4 | Limestone, very shelly sand;   | 5. Voic | d, final layer, no capacit | у.                                  |                     |
| 2. Depths are relativ  | e to ground surface     | elevation. T   | ne first layer must have a de  | pth of 0.                      |         |                            |                                     |                     |
| 3. Soil Description a  | nd E100 are not edi     | table fields i | n the above table, and are i   | NOT used in the analysis. They | are in  | mported fields when us     | sing the database, to help assign a | soil type.          |
|                        |                         |                |                                |                                |         |                            |                                     |                     |
|                        |                         |                |                                |                                |         |                            |                                     |                     |
|                        |                         |                |                                | OK Can                         | cel     |                            |                                     |                     |

Figure: 3.6.h Soil Data Imported onto the Soil Data Dialog

Note that the Soil Description field is disabled. This field is not editable in FB-Deep. Certain soil data in the database will NOT have a soil type number, and will have a soil description that does not match one of the available soil types in FB-Deep. This soil description (along with other soil properties such as blowcount, unit weight, etc), can help the FB-Deep user decide which of FB-Deep 5 soil types to assign after the soil is imported.

It is important to remember that the database soil records may not have been originally uploaded from FB-Deep. Thus, when these soil records are downloaded, they may lack certain data that FB-Deep requires to run an analysis. It is therefore recommended after each download to double check the soil data within FB-Deep to ensure it is complete. The units of the downloaded data will automatically be converted, if necessary, to the current units in FB-Deep.

 $\times$ 

# 3.6.3 Uploading Walkthrough

Uploading to the Geotechnical Database can be accomplished through the following steps:

Go to the Boring Log screen, either by clicking the Boring Log icon, or using the 'Boring Log' menu item under the 'Show' menu (Figure: 3.6.i).

| _ | _                                                                                                                                     | _              | -        |          |          |        |         | _          |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|----------|--------|---------|------------|--|--|--|
|   |                                                                                                                                       |                | <b>F</b> |          |          | 9      | X       |            |  |  |  |
|   | e P                                                                                                                                   | B-Deep - C:\Pr | ogram F  | iles (x8 | 6)\BSI\F | B-Deep | \Examp  | leFiles\Cl |  |  |  |
|   | File                                                                                                                                  | Show Help      |          |          |          |        |         |            |  |  |  |
|   | P                                                                                                                                     | Soil Data      | Screen   |          |          |        |         |            |  |  |  |
|   | U Shaft Capacity Report (brief Report) >><br>Shaft Capacity Report (detailed Report) >><br>Shaft Capacity Report (detailed Report) >> |                |          |          |          |        |         |            |  |  |  |
|   | C                                                                                                                                     | ) Metric       | OD       | riven Pi | le       | SI     | ump (in | ):         |  |  |  |

Figure: 3.6.i Opening Boring Log

When the Boring Log appears, enter desired Soil Data in the Soil Table. Then click the "Import/Export Soil Data' button (Figure: 3.6.j)

💼 Soil Data

| Sounding Identificat  | ion                     |                | Additional Options             |                             |             | CPT Methods                |                                       |                    |
|-----------------------|-------------------------|----------------|--------------------------------|-----------------------------|-------------|----------------------------|---------------------------------------|--------------------|
| Test Date:            |                         |                | Ground Surface Elevati         | on: 0.000                   | (ft)        | • UF                       |                                       |                    |
| Test Number:          | CPT_UF                  |                | Blow count is obtain           | ned using automatic ham     | mer         | ⊖ LCPC                     | CPT Data                              |                    |
| Station Number:       |                         |                | Correction Factor:             | 1.000                       |             | ◯ Schmertmann              | kb & Fs Factors                       |                    |
| Offset:               |                         | ?              | Use default values f           | or qb and Em                |             | Phi Factor:                | 0.660 ?                               |                    |
| Soil Layering         |                         |                |                                |                             |             |                            |                                       |                    |
| Insert Layer          | Delete Layer            | Import/8       | Export                         |                             |             |                            |                                       |                    |
| N                     | 0.                      |                | Depth                          | Soil                        |             |                            | Soil                                  | ^                  |
|                       |                         |                | (ft)                           | Туре                        |             |                            | Description                           |                    |
|                       | 1                       |                | 0.000                          |                             | 3           | 3                          |                                       | Clean Sand         |
|                       | 2                       |                | 7.500                          |                             | 3           | 3                          |                                       | Clean Sand         |
|                       | 3                       |                | 15.000                         |                             | 2           | 2                          | C                                     | ay and silty Sand  |
|                       | 4                       |                | 19.000                         |                             | 2           | 2                          | C                                     | lay and silty Sand |
|                       | 5                       |                | 22.000                         |                             | 3           | 3                          |                                       | Clean Sand         |
|                       | 6                       |                | 31.000                         |                             | 2           | 2                          | C                                     | lay and silty Sand |
|                       | 7                       |                | 34.000                         |                             | 3           | 3                          |                                       | Clean Sand         |
|                       | B                       |                | 44.500                         |                             | 3           | 3                          |                                       | Clean Sand         |
|                       | n -                     |                | F3 000                         |                             | -           |                            |                                       | Class Canal ¥      |
| Notes                 |                         |                |                                |                             |             |                            |                                       |                    |
| 1. Soil Types are as  | follows: 1. Plastic cla | ay; 2. Clay an | d silty sand; 3. Clean sand; 4 | 4. Limestone, very shelly s | and; 5. Voi | d, final layer, no capacit | ty.                                   |                    |
| 2. Depths are relativ | ve to ground surface    | elevation. T   | he first layer must have a d   | epth of 0.                  |             |                            |                                       |                    |
| 3. Soil Description a | and E100 are not edi    | table fields i | n the above table, and are     | NOT used in the analysis.   | They are i  | mported fields when us     | sing the database, to help assign a s | oil type.          |
|                       |                         |                |                                |                             |             |                            |                                       |                    |
|                       |                         |                |                                |                             |             |                            |                                       |                    |
|                       |                         |                |                                | OK                          | Cancel      |                            |                                       |                    |

Figure: 3.6.j Soil Data Dialog

A menu (Figure: 3.6.k) will appear, with the following choices: 'Upload Soil Data to Database', 'Download Soil Data from Database', 'Save Soil Data to XML File', and 'Retrieve Soil Data from XML File'. Select 'Upload Soil Data from Database'.

×

| 💼 Soil Data             |                                                                |  |  |  |
|-------------------------|----------------------------------------------------------------|--|--|--|
| Sounding Identification | Additional Options                                             |  |  |  |
| Test Date:              | Ground Surface Elevation: 0.000                                |  |  |  |
| Test Number:            | Blow count is obtained using auto                              |  |  |  |
| Station Number:         | Correction Factor: 1.000                                       |  |  |  |
| Offset:                 | ? Use default values for qb and Em                             |  |  |  |
| Soil Layering           | Import/Export                                                  |  |  |  |
|                         | Upload Soil Data to Database                                   |  |  |  |
| No.                     | Download Soil Data from Database                               |  |  |  |
| 1                       | Save Soil Data to XML File<br>Retrieve Soil Data from XML File |  |  |  |
| 2                       |                                                                |  |  |  |
| 3                       | Save CPT Data to File                                          |  |  |  |
| 4                       | 22.000                                                         |  |  |  |
| 5                       | 35.000                                                         |  |  |  |

Figure: 3.6.k Import/Export Soil Data

A database log-in screen will display (Figure: 3.6.I), prompting for required info that will be used to position the uploaded data in the database.

| Database Login    |        | × |
|-------------------|--------|---|
|                   |        |   |
| Enter Username:   |        |   |
| Enter Password:   |        |   |
| Bridge Number:    |        |   |
| Financial Number: |        |   |
| Pier Name:        |        |   |
| Pile Name:        |        |   |
| ОК                | Cancel |   |

Figure: 3.6.I Database Upload Login Window

This required info varies, depending on the Analysis Type. For a SPT Analysis, the required log-in data include a) user name, b) password, c) Bridge Number, d) Financial Number, e) Pier Name, and f) Pile/Shaft Name. A Project Number is also required. However the Project Number is input on the Pile/Shaft input screen in FB-Deep, NOT in the log-in screen. For a CPT Analysis, the required log-in data includes a) user name, and b) password. The Cone Sounding Number is also required, but is input on the Boring Log (Soil Data screen), NOT in the log-in screen. After completing the log-in info, click the 'OK' button to send the data to the database. This can take several seconds, but generally will take should take less much less than one minute. When complete, the Upload Log screen will appear (Figure: 3.6.I)

| 🛃 Upload Log         | -    |  | $\times$ |  |  |  |
|----------------------|------|--|----------|--|--|--|
| View Your Upload Log |      |  |          |  |  |  |
| [                    | Exit |  |          |  |  |  |

Figure: 3.6.m Upload Log Window

To view the results of the Upload, click 'View Your Upload Log'. The Upload Log shows the status of each type of data that uploaded. For example, the result 'Pile\_Soil\_Data inserted' displays seven times, one for each uploaded soil layer (Figure: 3.6.n).

```
Your DLL Version: 3.5
Projects- Project Number='123'
   Not Updated
Bridges- Bridge Number='789'
    Updated
Piers- Pier Name='20'
    Updated
Piles- Pile Name='12'***AsBuilt=0
    Updated
Pile Capacity
    Updated
Pile Soil Data - Deleted Original Records
    Inserted
Pile Soil Data
    Inserted
Pile Soil Data
   Inserted
Holes- Hole Name='123-a.1'
    Inserted
```

Figure: 3.6.n Pile Soil Data Inserted

If an error kept some or all of the data from uploading successfully, the error will display in the Upload Log. For assistance troubleshooting database errors, please email the Bridge Software Institute at <u>bsi@ce.ufl.edu</u>

The following is a complete list of data that is uploaded to the database. As is the case with downloading, the pile type (pile or shaft) and analysis type (SPT or CPT) dictates the type of data that is uploaded, as well as the location in which the uploaded data resides.

Drilled Shaft, SPT Analysis: this data is uploaded to the following location: 'GML  $\rightarrow$  Bridge  $\rightarrow$  Pier  $\rightarrow$  Shaft  $\rightarrow$  Shaft\_Capacity  $\rightarrow$  Soil\_Data'. This dataset includes the following fields for each soil layer: depth, soil type, blowcount, total unit weight, undrained shear strength, unconfined compressive strength, tensile strength,

end bearing, mass modulus, RQD reduction modification, shaft socket roughness, and rock recovery. The following data from the Pile/Shaft screen is also uploaded: Project Name, Project Number, Water Table Elevation, and Units. The following data from the Boring Log screen is also uploaded: Boring Number, and Ground Elevation. The following data from the Login screen is also uploaded: Bridge Number, Bridge Financial Number, Pier Name, and Shaft Name.

Driven Pile, SPT Analysis: this data is uploaded to the following location: 'GML  $\rightarrow$  Bridge  $\rightarrow$  Pier  $\rightarrow$  Pile  $\rightarrow$  Pile\_Capacity  $\rightarrow$  Soil\_Data'. This dataset includes the following fields for each soil layer: depth, soil type, and blowcount. The following data from the Pile/Shaft screen is also uploaded: Project Name, Project Number, Water Table Elevation, and Units. The following data from the Boring Log screen is also uploaded: Boring Number, and Ground Elevation. The following data from the Login screen is also uploaded: Bridge Number, Bridge Financial Number, Pier Name, and Pile Name.

Driven Pile, CPT Analysis, with Schmertmann or LCPC method: the soil layer data is uploaded to the following location: 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Layer\_Data'. This dataset includes the following fields for each soil layer: depth and soil type. The reading data is uploaded to the following location: 'GML  $\rightarrow$ Subsurface  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Data'. This dataset includes the following fields for each reading: depth, qc, and fs. The following data from the Pile/Shaft screen are also uploaded: Project Name, Water Table Elevation, and Units. The following data from the Boring Log (Soil Data) screen are also uploaded: Sounding Date, Cone Sounding Number, Station and Offset, and Ground Elevation.

Driven Pile, CPT Analysis, UF method: the soil layer data is uploaded to the following location: 'GML  $\rightarrow$  Subsurface  $\rightarrow$  Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Layer\_Data'. This dataset includes the following fields for each soil layer: depth, soil type, kb, and Fs. The reading data is uploaded to the following location: 'GML  $\rightarrow$  Subsurface  $\rightarrow$ Hole  $\rightarrow$  CPT  $\rightarrow$  CPT\_Data'. This dataset includes the following fields for each reading: depth, qc and fs. The following data from the Pile/Shaft screen are also uploaded: Project Name, Water Table Elevation, and Units. The following data from the Boring Log (Soil Data) screen are also uploaded: Sounding Date, Cone Sounding Number, Station and Offset, and Ground Elevation.

### 3.6.4 XML Files

Related to the database connectivity is the ability to save and read soil data to and from XML files. To save to an XML file, click the 'Import/Export' button on the Boring Log. Then choose the menu item 'Save Soil Data to an XML File'. This action saves the soil data to an XML file. This file differs from a "full" FB-Deep input file (.spc), in that this XML file does not contain any pile or shaft data. It contains only soil data (ie, layer depth, soil type, reading data, etc). This file can later be opened from the Boring Log screen, by clicking the 'Import/Export Soil Data' button, and choosing the menu item 'Retrieve Soil Data from XML File'.

# 3.6.5 Troubleshooting

Incorrect Time on System Clock – If the system clock on the computer that has FB-Deep installed does not match the time on the database server, there is potential for an unsuccessful database connection. The degree of accuracy with which the two clocks must match is approximately 1 minute. The server updates its clock automatically via an on-line source. Therefore, if a connection to the database cannot be established, check the system clock on your machine. (This generally in not a problem on newer operating systems, such as XP or Vista).

Multiple Soil Sets – A soil set is defined as a group of soil layer data; for example, one boring log of data (see the section on the Soil Set Selector Window below for further explanation). FB-Deep can only store and display ONE set of soil data at a time. Thus, if an attempt is made to download multiple sets of soil data from the database in one download, an "Invalid Data" message will display. The same is true for attempting to import multiple soil sets from an XML file.

FB-Deep will prompt the user to select only one of these Soil Sets. In so doing, the Soil Set Selector window will display (Figure: 3.6.0).



Figure: 3.6.o Soil Set Selector Window

The Soil Set Selector window displays an XML string in tree form. In the tree, each line of Soil Set data will begin with one of the following tags: "Soil\_Data, "CPT\_Layer\_Data", "Rock\_Specimen", or "Soil\_Specimen". These lines of soil data are colored in blue, to make them easier to locate in the tree.

Each Soil Set will have a Soil Set parent tree node located immediately above the Soil Set. These parent nodes are colored in red. Each parent will begin with one of the following tags: Pile\_Capacity, Shaft\_Capacity, Core, Tube, or CPT.

To select a Soil Set (colored in blue), click on a soil set parent node (colored in red). These soil set parent nodes are positioned immediately above soil sets. For example, in Figure 2, the soil set parent node is <Pile\_Capacity Company="" Hole\_Name-"B-5"..... And the Soil Set is the series of blue lines immediately below this line, beginning with <Soil\_Data Depth="0" Soil\_Type="3" N="0"..... When a soil set parent node is selected, the "Select Soil Set" button becomes enabled (Figure: 3.6.p).



Figure: 3.6.p Soil Set Selector Window with Soil Set parent node selected (highlighted)

Click the "Select Soil Set" button to import the soil set into the Boring Data/Soil Layering Table.

After the selection has been made, the Soil Set data displays in the Boring Log/Soil Data window.

# 3.7 Graphical Output

FB-Deep produces several types of graphical results, all of which are shown in the Plot Window.

Driven Pile Capacity for a range of piles:



Job Name: South Bear

State Job (Project) #: 409040



#### Drilled Shaft Capacity for a range of shafts:

#### Plot Window



 $\times$ 

Drilled Shaft Settlement for a single shaft:





#### Driven Pile Resistance for a range of piles, using CPT analysis:

#### Plot Window



 $\times$ 

The Plot Window's graph area is customizable. Plot line size, color, fonts, x and y axes range, and the number of tick marks and grid lines can all be adjusted. The plot area can also be zoomed and panned. To access these customizable options, click the "Custom" button at the bottom of this dialog.

By default, all curve types are displaced. Curves can be hidden by unchecking them in the "Curves" frame, as pictured below. Because the x and y axis ranges are based on the currently displayed curves, hiding certain curves sometimes readjusts the plot perspective.

#### Plot Window



Graphical data can be saved to a text (.txt) file. The data saved in the text file matches the curves that are currently selected in the "Curves" frame on the Plot Window. This saved data can be used in other software, such as EXCEL. Here is an example of the file format:

|                |               | Nominal              |                      |                      |                      |        |
|----------------|---------------|----------------------|----------------------|----------------------|----------------------|--------|
| Test           |               | Skin                 | Nominal              |                      |                      |        |
| Pile           | Pile          | Friction             | Тір                  | Nominal              | Design               | Phi    |
| Length<br>(ft) | Width<br>(in) | Resistance<br>(tons) | Resistance<br>(tons) | Resistance<br>(tons) | Resistance<br>(tons) | Factor |
| 20.00          | 18.0          | 101.06               | 86.30                | 187.36               | 123.66               | 0.660  |
| 21.00          | 18.0          | 108.68               | 86.25                | 194.93               | 128.65               | 0.660  |
| 22.00          | 18.0          | 116.30               | 85.93                | 202.23               | 133.47               | 0.660  |
| 23.00          | 18.0          | 119.26               | 104.13               | 223.39               | 147.44               | 0.660  |
| 24.00          | 18.0          | 123.93               | 117.22               | 241.15               | 159.16               | 0.660  |
| 25.00          | 18.0          | 128.99               | 124.84               | 253.83               | 167.53               | 0.660  |
| 26.00          | 18.0          | 136.10               | 128.88               | 264.98               | 174.89               | 0.660  |
| 27.00          | 18.0          | 146.51               | 120.00               | 266.51               | 175.90               | 0.660  |
| 28.00          | 18.0          | 157.77               | 97.27                | 255.04               | 168.32               | 0.660  |
| 29.00          | 18.0          | 166.74               | 67.51                | 234.25               | 154.61               | 0.660  |
| 30.00          | 18.0          | 173.61               | 49.40                | 223.01               | 147.18               | 0.660  |
| 31.00          | 18.0          | 180.74               | 40.65                | 221.39               | 146.12               | 0.660  |
| 32.00          | 18.0          | 184.22               | 62.72                | 246.93               | 162.98               | 0.660  |
| 33.00          | 18.0          | 187.47               | 86.73                | 274.21               | 180.98               | 0.660  |
| 34.00          | 18.0          | 190.93               | 98.18                | 289.11               | 190.81               | 0.660  |
| 35.00          | 18.0          | 194.19               | 107.10               | 301.29               | 198.85               | 0.660  |
| 36.00          | 18.0          | 198.23               | 108.21               | 306.45               | 202.25               | 0.660  |
| 37.00          | 18.0          | 205.69               | 106.09               | 311.79               | 205.78               | 0.660  |
| 38.00          | 18.0          | 211.84               | 101.08               | 312.92               | 206.53               | 0.660  |
| 39.00          | 18.0          | 219.32               | 84.33                | 303.65               | 200.41               | 0.660  |
| 40.00          | 18.0          | 224.61               | 68.74                | 293.35               | 193.61               | 0.660  |

To save curve data to a text file, use the following steps:

1) On the Plot Window, select the desired curves in the "Curves" frame, by checking and/or unchecking the appropriate checkboxes.
2) Click the "Save to File" button.

3) By default, the directory for the text file will match the name of the current input file's directory. This path can be changed if desired, by browsing to a new directory using the "Save As" file dialog.

4) By default, the file name for the text file will match the name of the current input file, plus the ID(s) of the plotted shaft(s) or pile(s), plus a series of two-letter curve-type codes. These curve-type codes represent the currently selected curves in the "Curves" frame on the "Plot Window". For example, "SF" is the code for "Skin Friction", and "EB" is the code for "End Bearing". If all curves are selected, the curve-type code "ALL" will be used. For a complete list of codes, see the "Curve-Type Codes" list below. The file name can be changed by typing a new file name in the "Save As" file dialog.

## Curve-type Codes

- 1. Drilled Shafts
  - a. Single Shaft (Settlement Curve)
    - i. "SF" Side Friction
    - ii. "EB" End Bearing
    - iii. "TC" Total Capacity
    - iv. "ALL" All three of the above curves are selected
  - b. Range of Shafts (Capacity Curve)
    - i. "SF" Ultimate Side Friction
    - ii. "EB" Mobilized End Bearing
    - iii. "UC" Ultimate Shaft Capacity
    - iv. "ALL" All three of the above curves are selected
- 2. Driven Piles
  - a. SPT Analysis
    - i. Range of Piles (Capacity Curve)
      - I. "SF" Ultimate Side Friction
      - II. "EB" Mobilized End Bearing
      - III. "UC" Ultimate Pile Capacity
      - IV. "DC" Estimated Davisson Capacity

- V. "AC" Allowable Pile Capacity
- VI. "ALL" All five of the above curves are selected

### b. CPT Analysis

- i. Range of Piles (Resistance Curve)
  - I. "SR" Nominal Skin Friction Resistance
  - II. "TR" Nominal Tip Resistance
  - III. "NR" Nominal Resistance
  - IV. "DR" Design Resistance
  - V. "ALL" All four of the above curves are selected

Example File Names assigned by FB-Deep

Example 1:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Drilled Shaft Settlement Curve.

Given the selected curves are Side Friction and End Bearing.

Given the plotted shaft ID is 1.

The default file name for the text file of curve values will be "MyInputFile\_ID\_1-SF-EB.txt".

Example 2:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Drilled Shaft Settlement Curve.

Given the selected curves are Side Friction, End Bearing and Total Capacity.

Given the plotted shaft ID is 1.

The default file name for the text file of curve values will be "MyInputFile\_ID\_1-ALL.txt".

Example 3:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Drilled Shaft Capacity Curve for a Range of Shafts.

Given the selected curves are Ultimate Side Friction. Given the plotted shaft IDs are is 1 thru 5. The default file name for the text file of curve values will be "MyInputFile\_ID\_1-5-SF.txt".

### Example 4:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Drilled Shaft Capacity Curve for a Range of Shafts.

Given the selected curves are Mobilized End Bearing and Ultimate Shaft Capacity.

Given the plotted shaft IDs are is 1 thru 5.

The default file name for the text file of curve values will be "MyInputFile\_ID\_1-5-EB-UC.txt".

### Example 5:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Driven Pile Capacity Curve for a Range of Piles, using an SPT analysis.

Given the selected curves are Ultimate Side Friction, Estimated Davisson

Capacity, and Allowable Pile Capacity.

Given the plotted pile IDs are is 1 thru 5.

The default file name for the text file of curve values will be "MyInputFile\_ID\_1-5-SF-DC-AC.txt".

### Example 6:

Given the name of the input file is "MyInputFile.spc".

Given the curve type is a Driven Pile Resistance Curve for a Range of Piles, using an CPT analysis.

Given the selected curves are Nominal Skin Friction Resistance, Nominal Tip

Resistance, and Design Resistance.

Given the plotted pile IDs are is 1 thru 5.

The default file name for the text file of curve values will be "MyInputFile\_ID\_1-5-SR-TR-DR.txt".

# **3.8 Backwards Compatibility**

Several changes were implemented in FB-Deep, version 1.19. These changes included the following: new unit skin friction and unit end bearing formulas for concrete cylinder piles with a diameter of greater than 36" (914.4mm); new unit skin friction and unit end bearing formulas for steel pipe piles with a diameter of greater than 36" (914.4mm); requiring the use of the Rock Side Friction method A qu ^ B if there are any smooth sockets present in the boring log; use of the new variable Rock Recovery to modify the skin friction in rock (formerly, RQD Modification has been used. Now, RQD is used only in the settlement calculations).

To allow backwards compatibility, if a user has an old input file (an input file that was created on FB-Deep version 1.18 or previous), the user can still use the same formulas and methodology that was available when these older input files were created. For example, if the user has an old input file, with a 40" diameter cylinder pile, the original skin friction and end bearing formulas will be used, instead of the new large diameter cylinder pile formulas.

To force an old input file to adopt the newest formulas and methodology, simply open the input file in the current version of FB-Deep. Then resave the file. You will be prompted with a message box asking if you want to adopt the new formulas and methods. If you click "Yes", then the input file will be saved as a NEW file, and the latest formulas and methods will be used. If you click "No", then the input file will be saved and an OLD input file, so all of the original methods will be used. If you do chose to save the file, you might want to resave the file under a different file name, so that you still have a copy of the old input file, which would still have access to the older methods, for example using RQD modification for skin friction calculations.

# 4 User Walkthrough

- 1. Walkthrough Introduction
- 2. Driven Piles Examples
- 3. Drilled Shaft Examples

## 4.1 Walkthrough Introduction

User's Guide for FB-Deep (Formerly SHAFTSPT) F.C. Townsend

The FB-Deep computer program is a Windows based program used to estimate the static axial capacity of drilled shafts and driven piles.

The drilled shaft methodology is based upon Federal Highway Administration reports: (a) Reese, L. and O'Neill, M. (1988) "Drilled Shafts: Construction Procedure and Design Methods", and (b) O'Neill, M.W. et al. (1996) "Load Transfer for Drilled Shafts in Intermediate Geomaterials". The former presents methods for estimating drilled shaft capacity in clays or sands, and provides settlement estimates. The latter addresses intermediate geomaterials, soft rock, qu between 0.5 and 5.0 Mpa (1.7 to 17 tsf) and SPT blow counts of 50 - 100; and provides settlement analyses. Load transfer for rock socketed shafts in Florida limestone is based upon the methodology described in; (a) FDOT Final Report " An Evaluation of Design Methods for Drilled Shafts)" (1990), which is also found (b) McVay, M.C. et al. (1992).

Driven pile methodology utilizes two types of analyses: SPT and CPT. SPT methodology is based on empirical correlations between cone penetrometer tests and standard penetration tests for typical Florida soil types. Unit end bearing resistance and unit skin friction resistance versus SPT N values are given in the FDOT research bulletin RB-121, for the different soil types. Driven pile capacity calculated using CPT data can be determined by three separate methods. The first method is the Schmertmann method proposed by Schmertmann in 1978 (AASHTO LRFD Bridge Design Manual). The second method is the LCPC method proposed by Bustamante and Gianeselli for the French Highway Department in 1982. The third method is the UF method proposed by Bloomquist, McVay and Hu for the Florida Department of Transportation in 2007.

FB-Deep replaces earlier versions of ShaftSPT97. ShaftSPT97 replaced SHAFTUF and SHAFT93 and SPT97.

**4.2 Driven Piles** 

- 1. SPT Method
- 2. CPT Method

# 4.2.1 SPT Method

#### File Show Help X Units Pile Type Analysis Type Pile Material Section Type Concrete Steel OH\_section Square English O Drilled Shaft SPT 150.000 Unit Weight (pcf): O Pipe ORound ○ Metric Oriven Pile О СРТ O Cylinder **Pile Geometry** Project Information Project Number: Insert Pile Insert Range **Delete Piles** Capacity Report Capacity Plot Generate Width Min. Length Thickness Pile End Max. Length ID Input Length Increment Job Name: Option (ft) (in) (in) (ft) (ft) (ft) 40.000 24.000 1 Engineer: Notes 1. The maximum number of piles/shafts in a range is 100.

## **Prestressed Square Concrete Pile**



1- In the Opening Screen, select:

Units = English Type = Driven Pile Analysis Type = SPT Section Type = Square.

2- In "Pile Material", introduce the unit weight in pcf of the pile material Unit Weight= 150 pcf

3- In "Pile Geometry", click "Insert Pile" and introduce its parameters: Input= Single Length= 40ft Width= 24in 4- Select form the "Show" menu, Boring log or click the Boring Log icon in the Toolbar to open the Boring Log window.



Figure: 4.2.b Boring Log

5- In the Boring Log Screen, select:

Ground Surface= 0.0ft

6- Click "Insert Layer" as many times as layers needed and introduce soil parameters:

Soil Type= 3 (Sand) N.Blows= 15 Blows/ft

Note: FB-Deep differs from the program SPT97 in that the last entry in FB-Deep does NOT equal 0

| *                                                                                                                                     |                                                                                                                           |                                                                       | Boring Log                                            |                                 |                                                                           | ×         |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|-----------|
| Boring Identification                                                                                                                 | Additional<br>Ground S                                                                                                    | Options                                                               | 0.000                                                 | (ft)                            |                                                                           |           |
| Boring Number:                                                                                                                        |                                                                                                                           | Blow count is obtained using automatic                                |                                                       | (,                              |                                                                           |           |
| Station Number:                                                                                                                       | Correctio                                                                                                                 | n Factor:                                                             | 1.000                                                 |                                 |                                                                           |           |
| Offset:                                                                                                                               | ? Use d                                                                                                                   | efault values for qb ar                                               | nd Em                                                 |                                 |                                                                           |           |
| Boring Data                                                                                                                           |                                                                                                                           |                                                                       |                                                       |                                 |                                                                           |           |
| Insert Layer Delete Lay                                                                                                               | ver Import/Export                                                                                                         | Soil                                                                  |                                                       |                                 | Soil                                                                      | N Blows   |
| 110.                                                                                                                                  | (ft)                                                                                                                      | Type                                                                  |                                                       |                                 | Description                                                               | (blow/ft) |
| 1                                                                                                                                     | 0.000                                                                                                                     | .,,-                                                                  | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| 2                                                                                                                                     | 10.000                                                                                                                    |                                                                       | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| 3                                                                                                                                     | 20.000                                                                                                                    |                                                                       | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| 4                                                                                                                                     | 30.000                                                                                                                    |                                                                       | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| 5                                                                                                                                     | 40.000                                                                                                                    |                                                                       | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| 6                                                                                                                                     | 50.000                                                                                                                    |                                                                       | 3                                                     |                                 | Clean Sand                                                                | 15.000    |
| Notes<br>1. Soil Types are as follows: 1. Plastic<br>2. Depths are relative to ground surf.<br>3. Soil Description and E100 are not e | : clay; 2. Clay and silty sand; 3. Clea<br>ace elevation. The first layer must ł<br>editable fields in the above table, a | in sand; 4. Limestone,<br>nave a depth of 0.<br>nd are NOT used in th | , very shelly sand; 5. Vo<br>ne analysis. They are in | id, final laye<br>ported field: | r, no capacity.<br>s when using the database, to help assign a soil type. | ~         |
|                                                                                                                                       |                                                                                                                           |                                                                       | ОК                                                    | Cancel                          |                                                                           |           |

Figure: 4.2.c Boring Log Screen

7- Click "Ok" to go back to the Main screen.

8- In the Main Screen click "Capacity Report" or in the "Show" menu and select "Shaft Capacity Report (Brief Report)" or if preferable "Shaft Capacity Report (Detailed Report)".

| Test   | Pile  | Ultimate | Mobilized | Estimated | Allowable | Ultimate |
|--------|-------|----------|-----------|-----------|-----------|----------|
| Pile   | Width | Side     | End       | Davisson  | Pile      | Pile     |
| Length |       | Friction | Bearing   | Capacity  | Capacity  | Capacity |
| (ft)   | (in)  | (tons)   | (tons)    | (tons)    | (tons)    | (tons)   |
|        |       |          |           |           |           |          |
| 40.00  | 24.0  | 91.20    | 64.00     | 155.20    | 77.60     | 283.20   |

NOTES

1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.

- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

## 4.2.2 CPT Method

- 1. Example 1: CPT Walkthroungh Problem
- 2. Example 2: Schmertmann Method
- 3. Example 3: UF Method
- 4. Example 4: LCPC Method

# 4.2.2.1 Example 1: CPT Walkthrough Problem



Pile Length = 34ft. Pile Width = 24 in. Pile Type = Driven Concrete Square Unit Weight = 150 pcf

### **Opening Screen**

| 💼 FB-Deep - C:\Pr   | rogram Fil | es (x86)\BSI\ | FB-Deep\Exa     | mpleFiles\Pile_B | xample1.spc           |           |              |              |             | -          | ×        |
|---------------------|------------|---------------|-----------------|------------------|-----------------------|-----------|--------------|--------------|-------------|------------|----------|
| File Show Help      |            |               |                 |                  |                       |           |              |              |             |            |          |
| - E 🚰 🗖 🚺           |            | <b>a</b>      | X               |                  |                       |           |              |              |             |            |          |
| Units               | Pile Ty    | pe            | Analysis        | 5 Type Pi        | le Material           |           | [            | Section Type | c           | teel       |          |
| English             | () Dri     | lled Shaft    | ⊖ SPT           |                  | lait this also in the | 150.000   |              | Square       | 9           | H_section  |          |
|                     | Drive      | ven Pile      | CPT             |                  | Unit weight (pcr):    | 150.000   | ,            | Cylinder     |             | ) Pipe     |          |
| Project Information | on         | Pile Geomet   | try             |                  |                       |           |              |              |             |            |          |
| Project Number:     |            | Insert P      | Pile            | Insert Rang      | e G                   | enerate   | Delete Piles | Capa         | city Report | Capacity P | lot      |
| 409040              |            | ID            | Input           | Length           | Width                 | Thickness | Pile End     | Min. Length  | Max. Length | Increment  | <b>^</b> |
| Job Name:           | _          |               | Option          | (ft)             | (in)                  |           |              | (ft)         | (ft)        | (ft)       |          |
| South Bear          |            | 1             | Single          | 34.000           | 24.000                |           |              |              |             |            |          |
| Engineer:           |            |               |                 |                  |                       |           |              |              |             |            |          |
| Ahmed               |            |               |                 |                  |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            | -        |
|                     |            | ,             |                 |                  |                       |           |              |              |             |            | _        |
| Notes               |            |               |                 |                  |                       |           |              |              |             |            |          |
| 1. The maximum      | number (   | of piles/shaf | ts in a range i | s 100.           |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            |          |
|                     |            |               |                 |                  |                       |           |              |              |             |            |          |

Units = English, Pile Type = Driven

Unit Weight = 150, Section Type = Concrete Square

Click-Insert Pile: Length = 34, Width = 24



Click Soil (boring log) icon in Toolbar.

#### Soil Data Screen

| 💼 Se | oil Data |
|------|----------|
|------|----------|

| Sounding Identification | on           |                | Additional Options                                       |      |
|-------------------------|--------------|----------------|----------------------------------------------------------|------|
| Test Date:              | 04-08-02     |                | Ground Surface Elevation: 0.00                           | 00   |
| Test Number:            | B-5          |                | Blow count is obtained using                             | auto |
| Station Number:         | 33+69.75     |                | Correction Factor: 1.00                                  | 00   |
| Offset:                 |              | ?              | Use default values for qb and                            | Em   |
| Soil Layering           |              |                |                                                          |      |
| Insert Layer            | Delete Layer | Import/E       | xport                                                    |      |
| No                      | D.           | Uploa<br>Down  | ad Soil Data to Database<br>Ioad Soil Data from Database | t    |
| 1                       |              | Save<br>Retrie | Soil Data to XML File<br>we Soil Data from XML File      |      |
| 2                       |              | Impo           | rt CPT Data from File                                    |      |
| 3                       |              | Save           | CPT Data to File                                         |      |

Analysis Type = CPT-Schmertmann

Click "Import/Export" button, then select "Import CPT Data from File". CPT data can be imported as a .txt or .xls file. See "CPT Modeling" for correct units and file format. Then click the "CPT Data button" to launch the CPT Data Screen.

#### **CPT Data Screen**

CPT Data

| eading |          |            |       | Friction | Tip Resistance Friction Ratio                                                                         |
|--------|----------|------------|-------|----------|-------------------------------------------------------------------------------------------------------|
| lumber | Depth    | qt         | fs    | Ratio    |                                                                                                       |
|        | (ft)     | (tsf)      | (tsf) | (%)      |                                                                                                       |
| 1      | 0.656    | 15.372     | 0.328 | 2.130    |                                                                                                       |
| 2      | 1.312    | 23.559     | 0.451 | 1.910    |                                                                                                       |
| 3      | 1.969    | 25.617     | 0.410 | 1.600    |                                                                                                       |
| 4      | 2.625    | 24.583     | 0.430 | 1.750    |                                                                                                       |
| 5      | 3.281    | 28.687     | 0.533 | 1.860    | 20                                                                                                    |
| 6      | 3.937    | 27.663     | 0.441 | 1.590    |                                                                                                       |
| 7      | 4.593    | 20.489     | 0.307 | 1.500    | t d d d d d d d d d d d d d d d d d d d                                                               |
| 8      | 5.249    | 23.559     | 0.379 | 1.610    |                                                                                                       |
| 9      | 5.906    | 32.781     | 0.574 | 1.750    |                                                                                                       |
| 10     | 6.562    | 30.734     | 0.615 | 2.000    |                                                                                                       |
| 11     | 7.218    | 26.640     | 0.338 | 1.270    |                                                                                                       |
| 12     | 7.874    | 32.781     | 0.471 | 1.440    | 40 40 3                                                                                               |
| 13     | 8.530    | 23.559     | 0.318 | 1.350    |                                                                                                       |
| 14     | 9.186    | 30.734     | 0.328 | 1.070    |                                                                                                       |
| 15     | 9.843    | 28.687     | 0.441 | 1.540    | 0 50 100 150 200 50 2 4 6                                                                             |
| 16     | 10.499   | 33.804     | 0.461 | 1.360    | qt (tsf) fs / qt (%)                                                                                  |
| 17     | 11.155   | 29.710     | 0.451 | 1.520    |                                                                                                       |
| 18     | 11.811   | 26.640     | 0.328 | 1.230    | Customize Print Customize Print                                                                       |
| 19     | 12.467   | 30.734     | 0.338 | 1.100    | Notes                                                                                                 |
| 20     | 13.123   | 35.861     | 0.348 | 0.970    | 1. All CPT Data is Electrical Cone Data.                                                              |
| 21     | 13.780   | 37.908     | 0.328 | 0.865    | 2. Friction Ratio is automatically calculated when 'Sort' or 'Udpate Plot' is clicked.                |
|        |          |            |       | ~        | 3. To show cursor position on a plot, hold down the left mouse button.                                |
| In     | sert Row | Delete Row | Sort  | t        | 4. To match a curve point with a CPT Table record, click on a point on the qt or Friction Ratio plot. |

Find layer changes by moving the cursor to the observed layer change on plot and hold down the left mouse button.

Comparing the cone bearing capacity graph to the friction ratio graph the user can see different soil layers as well as determine soil types. Cohesive soils have low cone bearing capacity values and high friction ratio values. This can be seen for the second layer with depths between depths of 16 and 25 ft. Cohesionless soils have high cone bearing capacity values and low friction ration values. This can be seen for first and third layers.

Click-OK when done

Soil Data Screen

💼 Soil Data

| Sounding Identificati<br>Test Date:<br>Test Number:<br>Station Number:<br>Offset:               | on<br>04-08-02<br>B-5<br>33+69.75                                        | ?                                                 | Additional Options<br>Ground Surface Elevati<br>Blow count is obtain<br>Correction Factor:    | on: 0.000<br>hed using automatic ham<br>1.000<br>for qb and Em                | (ft)<br>ner                          | CPT Methods<br>UF<br>LCPC<br>Schmertmann<br>Phi Factor: | CPT Data<br>kb & Fs Factors<br>0.43 ?  |              |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|----------------------------------------|--------------|
| Soil Layering<br>Insert Layer                                                                   | Delete Layer                                                             | Import/E                                          | xport                                                                                         |                                                                               |                                      |                                                         |                                        |              |
| N                                                                                               | 0.                                                                       |                                                   | Depth                                                                                         | Soil                                                                          |                                      |                                                         | Soil                                   | <u>^</u>     |
|                                                                                                 |                                                                          |                                                   | (ft)                                                                                          | Туре                                                                          | 2                                    |                                                         | Description                            | Class Cand   |
|                                                                                                 | 3                                                                        |                                                   | 16.000                                                                                        |                                                                               | 1                                    |                                                         |                                        | Plastic Clav |
|                                                                                                 |                                                                          |                                                   | 25.000                                                                                        |                                                                               | 3                                    | 1                                                       |                                        | Clean Sand   |
| 4                                                                                               |                                                                          |                                                   | 42.000                                                                                        |                                                                               | 3                                    |                                                         |                                        | Clean Sand   |
|                                                                                                 |                                                                          |                                                   |                                                                                               |                                                                               |                                      |                                                         |                                        | *            |
| Notes                                                                                           |                                                                          |                                                   |                                                                                               |                                                                               |                                      |                                                         |                                        |              |
| <ol> <li>Soil Types are as l</li> <li>Depths are relativ</li> <li>Soil Description a</li> </ol> | follows: 1. Plastic cla;<br>e to ground surface<br>ind E100 are not edit | r; 2. Clay and<br>elevation. Th<br>able fields ir | I silty sand; 3. Clean sand; 4<br>In first layer must have a d<br>In the above table, and are | 4. Limestone, very shelly se<br>epth of 0.<br>NOT used in the analysis.<br>OK | nd; 5. Void<br>They are in<br>Cancel | d, final layer, no capacity                             | y.<br>ing the database, to help assign | a soil type. |

Click – Insert Layer

Insert layer with depths found from CPT data Screen.

Note: Schmertmann method uses 2 soil descriptions, cohesive and cohesionless. For soil layer analysis the user should use soil types 1 and 3. For more information on the Schmertmann method see the FB-Deep Help Manual.

```
FB-Deep => Driven Piles => Method of Analysis => CPT => Methodology => Schmertmann.
```

Click – OK when done

Methods of Determining Soil Type

1. Cohesive soils have low cone bearing capacity values and high friction ratio values. Cohesionless soils have high cone bearing capacity values and low friction ration values.

2. Soil types can be determined by using the UBC-1983 Soil Behavior Type.

×

## 3. Compare a corresponding SPT boring log.

## Main Screen

| Inits            | Pile Typ | De         | Analysi | 5 Type Pile  | Material          |           |              | Section Type<br>Concrete | S           | iteel      |     |
|------------------|----------|------------|---------|--------------|-------------------|-----------|--------------|--------------------------|-------------|------------|-----|
| English          | ⊖ Dril   | led Shaft  | ⊖ SPT   |              | nit Weight (ncf): | 150.000   |              | Square                   |             | H_section  |     |
| OMetric          | Driv     | ven Pile   | CPT     |              | int weight (pci). |           |              | Cylinder                 |             | ) Pipe     |     |
| roject Informati | on       | Pile Geome | try     |              |                   |           |              |                          |             |            |     |
| Project Number   | .        | Insert     | Pile    | Insert Range | Ge                | nerate    | Delete Piles | Capa                     | city Report | Capacity P | lot |
| 409040           |          | ID         | Input   | Length       | Width             | Thickness | Pile End     | Min. Length              | Max. Length | Increment  | 4   |
| Job Name:        | _        |            | Option  | (ft)         | (in)              |           |              | (ft)                     | (ft)        | (ft)       | -   |
| South Bear       |          | 1          | Single  | 34.000       | 24.000            |           |              |                          |             |            |     |
| Engineer:        |          |            |         |              |                   |           |              |                          |             |            |     |
| Ahmed            |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |
|                  |          |            |         |              |                   |           |              |                          |             |            |     |

### Click - Cap. Report to view the Output

#### Driven Pile Capacity:

| Test<br>Pile<br>Length<br>(ft) | Pile<br>Width<br>(in) | Nominal<br>Skin<br>Friction<br>Resistance<br>(tons) | Nominal<br>Tip<br>Resistance<br>(tons) | Nominal<br>Resistance<br>(tons) | Design<br>Resistance<br>(tons) | Phi<br>Factor |
|--------------------------------|-----------------------|-----------------------------------------------------|----------------------------------------|---------------------------------|--------------------------------|---------------|
| 34.0                           | 24.0                  | 112.29                                              | 278.61                                 | 390.90                          | 168.09                         | 0.430         |

# 4.2.2.1 Example 2: Schmertmann Method

1- In the Opening Screen, select:

Units = English; Type = Driven Pile; Analysis Type = CPT; Section Type = Square

2- In "Pile Material", introduce the unit weight in pcf of the pile material Unit Weight=150 pcf

3- In "Pile Geometry", click "Insert Pile" and introduce its parameters:

| 💼 FB-Deep - Untitle                         | ed.spc                                  |                     |                  |          |                   |           |          |                       |                    |             | × |
|---------------------------------------------|-----------------------------------------|---------------------|------------------|----------|-------------------|-----------|----------|-----------------------|--------------------|-------------|---|
| File Control Help                           |                                         |                     |                  |          |                   |           |          |                       |                    |             |   |
| 🗋 🎽                                         |                                         |                     |                  | ) 🚺 🗾    | 2                 |           |          |                       |                    |             |   |
| Units                                       | Pile Typ                                | e                   | Analys           | is Type  | Pile Material     |           |          | Section Ty<br>Concret | pe<br>e            | Steel       |   |
| <ul> <li>English</li> <li>Metric</li> </ul> | <ul> <li>Drill</li> <li>Driv</li> </ul> | ed Shaft<br>en Pile | () SPT           | r        | Unit Weight (pcf) | : 150     | .000     | Cylir                 | n <b>d</b><br>nder | O H_section |   |
| Project Informatio                          | on F                                    | Pile Geometr        | у                |          |                   |           |          |                       |                    |             |   |
| Project Number:                             |                                         | Insert F            | Pile             | Insert R | ange              | Generate  | Delet    | e Piles               |                    |             |   |
| Job Name:                                   |                                         | ID                  | Input            | Length   | Width             | Thickness | Pile End | Min. Length           | Max. Length        | Increment   | ^ |
|                                             |                                         |                     | Option           | (ft)     | (in)              | (in)      |          | (ft)                  | (ft)               | (ft)        |   |
| Engineer                                    |                                         | 1                   | Single           | 34.00    | 24.000            |           |          |                       |                    |             |   |
|                                             |                                         |                     |                  |          |                   |           |          |                       |                    |             |   |
|                                             |                                         |                     |                  |          |                   |           |          |                       |                    |             | ~ |
| Notes                                       |                                         |                     |                  |          |                   |           |          |                       |                    |             |   |
| 1. The maximum                              | number o                                | of piles/shaft      | is in a range is | ; 100.   |                   |           |          |                       |                    |             |   |

Input= Single ; Length= 34ft; Width= 24in

4- Select form the "Show" menu, Soil Data or click the Boring Log icon in the Toolbar to open the Boring Log window.



5- In the Soil Data Screen, select:

### Ground Surface= 0.0ft; CPT Methods= Schmertmann; Phi Factor(default)= 0.430

6- Click "Insert Layer" as many times as layers needed and introduce soil parameters:

### Soil Type=3 (Sand), from (0.0ft-16.0ft) (25.0ft-42.0ft) Soil Type=1 (Clay), from (16.0ft-25.0ft)

| Date                                         |                         |                                   |                                       |                           |                                    |              |
|----------------------------------------------|-------------------------|-----------------------------------|---------------------------------------|---------------------------|------------------------------------|--------------|
| Date.                                        |                         | Ground Surface Elevation:         | 0.000 (ft)                            | ⊖ UF                      |                                    |              |
| Number:                                      |                         | Blow count is obtained u          | sing automatic hammer                 | OLCPC                     | CPT Data                           |              |
| on Number:                                   |                         | Correction Factor:                | 1.000                                 | Schmertmann               | kb & Fs Factors                    |              |
| et:                                          | ?                       |                                   |                                       | Phi Factor:               | 0.430 ?                            |              |
| ayering                                      |                         |                                   |                                       |                           |                                    |              |
| Insert Layer Delete Layer                    | Import/E                | kport                             |                                       |                           |                                    |              |
| No.                                          |                         | Depth                             | Soil                                  |                           | Soil                               |              |
|                                              |                         | (ft)                              | Туре                                  |                           | Description                        |              |
| 1                                            |                         | 0.000                             |                                       | 3                         |                                    | Clean Sand   |
| 2                                            |                         | 16.000                            |                                       | 1                         |                                    | Plastic Clay |
| 3                                            |                         | 25.000                            |                                       | 3                         |                                    | Clean Sand   |
| 4                                            |                         | 42.000                            |                                       | 3                         |                                    | Clean Sand   |
|                                              |                         |                                   |                                       |                           |                                    |              |
| i<br>il Tunos are as follours 1. Diantia als | عانہ اور میں دار کر میں | cande 2. Clean cande 4. Linearter | ao yooy shally candy 5 Void fired.    | war na canacity           |                                    |              |
| epths are relative to ground surface         | elevation. The fire     | st laver must have a depth of 0.  | ne, very sneny sand; J. vold, final i | ayer, no capacity.        |                                    |              |
| il Description and E100 are not edit         | able fields in the a    | bove table, and are NOT used in   | the analysis. They are imported f     | ields when using the data | abase, to help assign a soil type. |              |
|                                              |                         |                                   |                                       | -                         |                                    |              |
|                                              |                         |                                   |                                       |                           |                                    |              |

Note: Schmertmann method uses 2 soil descriptions, cohesive and cohesionless. For soil layer analysis the user should use soil types 1 and 3. For more information on the Schmertmann method see "Schmertmann".

7- Click "Import/Export" button, then select "Import CPT Data from File" to upload the results obtained for the CPT testing. CPT data can be imported as a .txt or .xls file. See "CPT Modeling" for correct units and file format. Then click the "CPT Data" button to launch the CPT Data Screen.

CPT Data

|         |           |            | <u> </u> |            |                                                                                                                                                   |                                                       |
|---------|-----------|------------|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Reading |           |            |          | Friction A | Tip Resistance                                                                                                                                    | Friction Ratio                                        |
| lumber  | Depth     | qt         | fs       | Ratio      |                                                                                                                                                   | 0                                                     |
|         | (ft)      | (tsf)      | (tsf)    | (%)        |                                                                                                                                                   | δ Ι                                                   |
| 1       | 0.656     | 15.372     | 0.328    | 2.130      |                                                                                                                                                   |                                                       |
| 2       | 1.312     | 23.559     | 0.451    | 1.910      | 10 5                                                                                                                                              | 10                                                    |
| 3       | 1.969     | 25.617     | 0.410    | 1.600      |                                                                                                                                                   |                                                       |
| 4       | 2.625     | 24.583     | 0.430    | 1.750      |                                                                                                                                                   |                                                       |
| 5       | 3.281     | 28.687     | 0.533    | 1.860      | 20                                                                                                                                                | 20                                                    |
| 6       | 3.937     | 27.663     | 0.441    | 1.590      | € {                                                                                                                                               |                                                       |
| 7       | 4.593     | 20.489     | 0.307    | 1.500      | ta   2                                                                                                                                            |                                                       |
| 8       | 5.249     | 23.559     | 0.379    | 1.610      | Č 20                                                                                                                                              |                                                       |
| 9       | 5.906     | 32.781     | 0.574    | 1.750      |                                                                                                                                                   | 30 3                                                  |
| 10      | 6.562     | 30.734     | 0.615    | 2.000      |                                                                                                                                                   |                                                       |
| 11      | 7.218     | 26.640     | 0.338    | 1.270      |                                                                                                                                                   |                                                       |
| 12      | 7.874     | 32.781     | 0.471    | 1.440      | 40                                                                                                                                                | 40                                                    |
| 13      | 8.530     | 23.559     | 0.318    | 1.350      |                                                                                                                                                   |                                                       |
| 14      | 9.186     | 30.734     | 0.328    | 1.070      |                                                                                                                                                   |                                                       |
| 15      | 9.843     | 28.687     | 0.441    | 1.540      | 50 50 100 150 200                                                                                                                                 | 50 2 4 6                                              |
| 16      | 10.499    | 33.804     | 0.461    | 1.360      | qt (tsf)                                                                                                                                          | fs / qt (%)                                           |
| 17      | 11.155    | 29.710     | 0.451    | 1.520      |                                                                                                                                                   |                                                       |
| 18      | 11.811    | 26.640     | 0.328    | 1.230      | Customize Print                                                                                                                                   | Customize Print                                       |
| 19      | 12.467    | 30.734     | 0.338    | 1.100      |                                                                                                                                                   |                                                       |
| 20      | 13.123    | 35.861     | 0.348    | 0.970      | Notes                                                                                                                                             |                                                       |
| 21      | 13.780    | 37.908     | 0.328    | 0.865      | 1. All CPT Data is Electrical Cone Data.                                                                                                          |                                                       |
| 22      | 14.436    | 34.827     | 0.553    | 1.590 🗸    | 2. Friction Ratio is automatically calculated when 'Sort' or 'Uc                                                                                  | dpate Plot' is clicked.                               |
| In      | nsert Row | Delete Row | Sort     | :          | <ol> <li>Io show cursor position on a plot, hold down the left mou</li> <li>To match a curve point with a CPT Table record, click on a</li> </ol> | se button.<br>point on the qt or Friction Ratio plot. |

8- Once the file is upload, it can be seen by selecting "CPT Data" located in the Soil Data screen.

Note: Find layer changes by moving the cursor to the observed layer change on plot and hold down the left mouse button.

Comparing the cone bearing capacity graph to the friction ratio graph the user can see different soil layers as well as determine soil types. Cohesive soils have low cone bearing capacity values and high friction ratio values. This can be seen for the second layer with depths between depths of 16 and 25 ft. Cohesionless soils have high cone bearing capacity values and low friction ration values. This can be seen for first and third layers.

9- Click "Ok" twice to go back to the Main screen.

10- In the Main Screen click "Show" menu and select "Shaft Capacity Report (Brief Report)".

×

| Section Type: | Square     |
|---------------|------------|
| Pile Width:   | 24.00 (in) |

|                |               | Nominal              |                      |                      |                      |        |
|----------------|---------------|----------------------|----------------------|----------------------|----------------------|--------|
| Test           |               | Skin                 | Nominal              |                      |                      |        |
| Pile           | Pile          | Friction             | Tip                  | Nominal              | Design               | Phi    |
| Length<br>(ft) | Width<br>(in) | Resistance<br>(tons) | Resistance<br>(tons) | Resistance<br>(tons) | Resistance<br>(tons) | Factor |
|                |               |                      |                      |                      |                      |        |
| 34.00          | 24.0          | 112.29               | 278.61               | 390.90               | 168.09               | 0.430  |

## 4.2.2.1 Example 3: UF Method

Now that you are able to navigate the FB-Deep for CPT analysis, you are now prepared to run an analysis for a complex set of data. The following data is from the SR 417 extension in Orlando, Florida.

First you should begin with interpreting your CPT data.

**Opening Screen** 



Units = English Pile Type = Driven Pile Click boring log icon in Toolbar.

Soil Data Screen

#### 💼 Soil Data

| Sounding Identificati | on       | Additional Options        |                        | CPT Methods  |                 |
|-----------------------|----------|---------------------------|------------------------|--------------|-----------------|
| Test Date:            | 04-08-02 | Ground Surface Elevation: | 0.000 (ft)             | • UF         |                 |
| Test Number:          | B-5      | Blow count is obtained    | using automatic hammer | OLCPC        | CPT Data        |
| Station Number:       | 33+69.75 | Correction Factor:        | 1.000                  | OSchmertmann | kb & Fs Factors |
| Offset:               | ?        | Use default values for q  | b and Em               | Phi Factor:  | 0.66 ?          |

 $\times$ 

### Analysis Type = CPT-UF

| 💼 Soil Data             |              |                  |                                                        |           |            |      |               |                 |   |              | × |
|-------------------------|--------------|------------------|--------------------------------------------------------|-----------|------------|------|---------------|-----------------|---|--------------|---|
| Sounding Identification | n            |                  | Additional Options                                     |           |            |      | CPT Methods   |                 |   |              |   |
| Test Date:              | 04-08-02     |                  | Ground Surface Elevation:                              | 0.000     |            | (ft) | • UF          |                 |   |              |   |
| Test Number:            | B-5          |                  | Blow count is obtained u                               | sing auto | matic hamn | er   | OLCPC         | CPT Data        |   |              |   |
| Station Number:         | 33+69.75     |                  | Correction Factor:                                     | 1.000     |            |      | O Schmertmann | kb & Fs Factors |   |              |   |
| Offset:                 |              | ?                | Use default values for qb                              | and Em    |            |      | Phi Factor:   | 0.66            | ? |              |   |
| Soil Layering           |              |                  |                                                        |           |            |      |               |                 |   |              |   |
| Insert Layer            | Delete Layer | mport/Exp        | port                                                   |           |            |      |               |                 |   |              |   |
| No                      |              | Upload<br>Downle | l Soil Data to Database<br>oad Soil Data from Database |           | Soil       |      |               | Soil            |   |              | ^ |
|                         |              | Save S           | oil Data to XML File                                   |           | Туре       |      |               | Description     |   | Class Cand   |   |
| 1                       |              | Retriev          | e Soil Data from XML File                              |           |            |      | 5             |                 |   | Clean Sand   |   |
| 2                       |              | Import           | CPT Data from File                                     |           |            |      | 3             |                 |   | Clean Sand   |   |
| 3                       |              | Save C           | PT Data to File                                        |           |            |      | 1             |                 |   | Plastic Clay |   |

Click "Import/Export" button, then select "Import CPT Data from File" to upload the results obtained for the CPT testing. CPT data can be imported as a .txt or .xls file. See "CPT Modeling" for correct units and file format. Then click the "CPT Data" button to launch the CPT Data Screen.

**CPT** Data Screen

CPT Data



Find layer changes by moving the cursor to the observed layer change on plot and hold down the left mouse button.

Click-OK when done

#### 🔹 Soil Data

| Sounding Identificati | on       | Additional Options        |                       | CPT Methods   |                 |
|-----------------------|----------|---------------------------|-----------------------|---------------|-----------------|
| Test Date:            | 04-08-02 | Ground Surface Elevation: | 0.000 (ft)            | IF UF         |                 |
| Test Number:          | B-5      | Blow count is obtained u  | sing automatic hammer | ⊖ LCPC        | CPT Data        |
| Station Number:       | 33+69.75 | Correction Factor:        | 1.000                 | O Schmertmann | kb & Fs Factors |
| Offset:               | ?        | Use default values for qb | and Em                | Phi Factor:   | 0.66 ?          |

#### Soil Layering

| No. | Depth  | Soil | Soil        |
|-----|--------|------|-------------|
|     | (ft)   | Туре | Description |
| 1   | 0.000  | 3    | Clean Sa    |
| 2   | 7.500  | 3    | Clean Sa    |
| 3   | 15.000 | 1    | Plastic C   |
| 4   | 19.000 | 1    | Plastic C   |
| 5   | 22.000 | 3    | Clean Sa    |
| 6   | 31.000 | 1    | Plastic C   |
| 7   | 34.000 | 3    | Clean Sa    |
| 8   | 44.500 | 3    | Clean Sa    |

#### Notes

1. Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.

2. Depths are relative to ground surface elevation. The first layer must have a depth of 0.

3. Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.

| OK | Cancel |
|----|--------|

#### Click – Insert Layer

Insert layer with depths found from CPT data Screen.

Insert Soil Types.

Note: The UF method uses all 5 soil type descriptions. For more information on the UF method see the FB-Deep Help Manual.

FB-Deep => Driven Piles => Method of Analysis => CPT => Methodology => UF.

Methods of Determining Soil Type

1. Cohesive soils have low cone bearing capacity values (qc) and high friction ratio values. Cohesionless soils have high cone bearing capacity values and low friction ration values.

- 2. Soil types can be determined by using the UBC-1983 Soil Behavior Type.
- 3. Compare a corresponding SPT boring log.

×

See SPT boring below for help with soil layering description.



Corresponding SPT Boring from SR 417 extension.

**Default Factors** 

| b       | Soil Description              | <u> </u> | Fs                    | kb          | Soil | Depth  | Soil  |
|---------|-------------------------------|----------|-----------------------|-------------|------|--------|-------|
| 1.000   | Clav                          |          | (Side Friction Coeff) | (Tin Coeff) | Type | (ft)   | laver |
| 0.450   | City                          |          | 150.000               | (1) COENT   | 1990 | 0.000  | 4     |
| 0.450   | SIIC                          |          | 150.000               | 0.400       | 2    | 0.000  | -     |
| 0.400   | Sand                          |          | 150.000               | 0.400       | 3    | 4.000  | 2     |
| 0.350   | Gravel                        |          | 50.000                | 1.000       | 1    | 15.000 | 3     |
| 0.150   | Lightly Cemented Sand         |          | 50.000                | 1.000       | 1    | 16.000 | 4     |
| 1100    | W// C . (C .)                 |          | 60.000                | 0.450       | 2    | 17.000 | 5     |
|         |                               |          | 50.000                | 1.000       | 1    | 19.000 | 6     |
| s       | Soil Description              |          | 150.000               | 0.400       | 3    | 22.000 | 7     |
| 50.000  | Clay                          |          | 50.000                | 1.000       | 1    | 31.000 | 8     |
| 60.000  | Silt, Sandy Clay, Clayey Sand |          | 150.000               | 0.400       | 3    | 34.000 | 9     |
| 100.000 | Loose Sand                    |          | 150.000               | 0.400       | 3    | 44 500 | 10    |
| 150.000 | Medium Dense Sand             |          | 100,000               | 0.100       | -    | 11.000 | 10    |
| 200.000 | Gravel and Dense Sand         |          |                       |             |      |        |       |
| 250.000 | Lightly Cemented Sand         | -        |                       |             |      |        |       |
| 300.000 | Well Cemented Sand            |          |                       | efaults     | D    |        |       |

For this example since there are no cemented layers seen in the SPT boring, the default factors can be used.

Click – Yes

Main Screen

| ● English<br>○ Metric                  | Pile Typ | oe<br>lled Shaft<br>ven Pile | Analysi:<br>SPT<br>© CPT | s Type Pile  | Material<br>hit Weight (pcf): | 150.000   |              | Section Type<br>Concrete<br>Square<br>Round<br>Cylinder | S           | teel<br>) H_section<br>) Pipe |          |
|----------------------------------------|----------|------------------------------|--------------------------|--------------|-------------------------------|-----------|--------------|---------------------------------------------------------|-------------|-------------------------------|----------|
| Project Information<br>Project Number: |          | Pile Geome<br>Insert I       | try<br>Pile              | Insert Range | Ge                            | nerate    | Delete Piles | Capad                                                   | ity Report  | Capacity Plo                  | ot       |
| 409040                                 |          | ID                           | Input                    | Length       | Width                         | Thickness | Pile End     | Min. Length                                             | Max. Length | Increment                     | <u>^</u> |
| Job Name:                              | - 11     |                              | Option                   | (ft)         | (in)                          |           |              | (ft)                                                    | (ft)        | (ft)                          |          |
| SOUTIBESI                              |          | 1                            | Single                   | 45.000       | 18.000                        |           |              |                                                         |             |                               |          |
| Engineer:                              | _        | 2-47                         | Range                    |              | 18.000                        |           |              | 20.000                                                  | 65.00       | 1.000                         |          |
| later                                  |          |                              |                          |              |                               |           |              |                                                         |             |                               | *        |

Pile Type = Driven

Unit Weight = 150pcf

Section Type = Concrete Square

Click-Insert Pile: Length = 45, Width = 18

Click - Cap. Report to view the Output

Driven Pile Capacity:

| Test<br>Pile<br>Length<br>(ft) | Pile<br>Width<br>(in) | Nominal<br>Skin<br>Friction<br>Resistance<br>(tons) | Nominal<br>Tip<br>Resistance<br>(tons) | Nominal<br>Resistance<br>(tons) | Design<br>Resistance<br>(tons) | Phi<br>Factor |
|--------------------------------|-----------------------|-----------------------------------------------------|----------------------------------------|---------------------------------|--------------------------------|---------------|
| 45.0                           | 18.0                  | 242.03                                              | 25.28                                  | 267.31                          | 176.42                         | 0.660         |

# 4.2.2.1 Example 4: LCPC Method

Now that you are able to navigate the FB-Deep for CPT analysis, you are now prepared to run an analysis for a complex set of data. The following data is from the SR 417 extension in Orlando, Florida.

First you should begin with interpreting your CPT data.

**Opening Screen** 



Units = English Pile Type = Driven Pile Click boring log icon in Toolbar.

Soil Data Screen

#### 💼 Soil Data

| Sounding Identificati | ion      | Additional Options        |                        | CPT Methods   |                 |   |
|-----------------------|----------|---------------------------|------------------------|---------------|-----------------|---|
| Test Date:            | 04-08-02 | Ground Surface Elevation: | 0.000 (ft)             | ⊖ UF          |                 |   |
| Test Number:          | B-5      | Blow count is obtained u  | ising automatic hammer | ● LCPC        | CPT Data        |   |
| Station Number:       | 33+69.75 | Correction Factor:        | 1.000                  | ◯ Schmertmann | kb & Fs Factors |   |
| Offset:               | ?        | Use default values for qt | o and Em               | Phi Factor:   | 0.47            | ? |
|                       |          |                           |                        |               |                 |   |

×

#### Soil Layering

| No. | Depth  | Soil | Soil        |
|-----|--------|------|-------------|
|     | (ft)   | Туре | Description |
| 1   | 0.000  | 3    | Clean Sa    |
| 2   | 7.500  | 3    | Clean Sa    |
| 3   | 15.000 | 1    | Plastic C   |
| 4   | 19.000 | 1    | Plastic C   |
| 5   | 22.000 | 3    | Clean Sa    |
| 6   | 31.000 | 1    | Plastic C   |
| 7   | 34.000 | 3    | Clean Sa    |
| 8   | 44.500 | 3    | Clean Sa    |

#### Analysis Type = CPT-LCPC

Click Import/Export Soil Data button, then select Import CPT Data from File. Then select the file "CPT\_LCPC\_ 1.txt", which is located in C:\Program Files\BSI\FB-Deep. CPT data can be imported as a .txt or .xls file. See Modeling under Driven Piles -> CPT for correct file format.

Cancel

OK

Then click the CPT Data button to launch the CPT Data Screen

CPT Data



#### **CPT** Data Screen

Find layer changes by moving the cursor to the observed layer change on plot and hold down the left mouse button.

Click-OK when done

Soil Data Screen

#### 掌 Soil Data

| Sounding Identification | on       | Additional Options        |                        | CPT Methods   |                 |
|-------------------------|----------|---------------------------|------------------------|---------------|-----------------|
| Test Date:              | 04-08-02 | Ground Surface Elevation: | 0.000 (ft)             | • UF          |                 |
| Test Number:            | B-5      | Blow count is obtained u  | ising automatic hammer | ⊖ LCPC        | CPT Data        |
| Station Number:         | 33+69.75 | Correction Factor:        | 1.000                  | O Schmertmann | kb & Fs Factors |
| Offset:                 | ?        | Use default values for q  | and Em                 | Phi Factor:   | 0.66 ?          |

#### Soil Layering

| Insert Layer Delete Layer | Import/Export |      |              |
|---------------------------|---------------|------|--------------|
| No.                       | Depth         | Soil | Soil         |
|                           | (ft)          | Туре | Description  |
| 1                         | 0.000         | 3    | Clean Sand   |
| 2                         | 7.500         | 3    | Clean Sand   |
| 3                         | 15.000        | 1    | Plastic Clay |
| 4                         | 19.000        | 1    | Plastic Clay |
| 5                         | 22.000        | 3    | Clean Sand   |
| 6                         | 31.000        | 1    | Plastic Clay |
| 7                         | 34.000        | 3    | Clean Sand   |
| 8                         | 44.500        | 3    | Clean Sand   |

#### Notes

1. Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.

2. Depths are relative to ground surface elevation. The first layer must have a depth of 0.

3. Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.

| Guilea |
|--------|
|--------|

#### Click - Insert Layer

Insert layer with depths found from CPT data Screen.

Insert Soil Types.

Note: The LCPC method uses all 5 soil type descriptions. For more information on the LCPC method see the FB-Deep Help Manual.

FB-Deep => Driven Piles => Method of Analysis => CPT => Methodology => LCPC.

Methods of Determining Soil Type

1. Cohesive soils have low cone bearing capacity values (qc) and high friction ratio values. Cohesionless soils have high cone bearing capacity values and low friction ration values.

- 2. Soil types can be determined by using the UBC-1983 Soil Behavior Type.
- 3. Compare a corresponding SPT boring log.

×

See SPT boring below for help with soil layering description.



Corresponding SPT Boring from SR 417 extension.

Main Screen

| 掌 FB-Deep - C:\P                    | rogram Fil | es (x86)\BSI\ | ,FB-Deep∖Exa  | mpleFiles\Pile_Ex | ample1.spc        |           |              |                             |             | _            | $\times$ |  |
|-------------------------------------|------------|---------------|---------------|-------------------|-------------------|-----------|--------------|-----------------------------|-------------|--------------|----------|--|
| File Show Help                      |            |               |               |                   |                   |           |              |                             |             |              |          |  |
| 🗅 💕 🗖 🖥                             |            | a a           | X             |                   |                   |           |              |                             |             |              |          |  |
| Units                               | Pile Ty    | pe            | Analysi       | s Type Pile       | Material          |           | r            | Section Type                |             |              |          |  |
| English                             | () Dri     | lled Shaft    | ⊖ SPT         | Ur                | nit Weight (pcf): | 150.000   | )            | Concrete<br>Square<br>Round |             | O H_section  |          |  |
|                                     | Ori        | ven Pile      | CPT           |                   |                   |           |              | ⊖ Cylinder                  |             |              |          |  |
| Project Informati<br>Project Number | on<br>:    | Pile Geomet   | try<br>Pile   | Insert Range      | Ge                | nerate    | Delete Piles | Сарас                       | ity Report  | Capacity Plo | ot       |  |
| 409040                              |            | ID            | Input         | Length            | Width             | Thickness | Pile End     | Min. Length                 | Max. Length | Increment    | <b>^</b> |  |
| Job Name:                           | _          |               | Option        | (ft)              | (in)              |           |              | (ft)                        | (ft)        | (ft)         |          |  |
| South Bear                          |            | 1             | Single        | 45.000            | 18.000            |           |              |                             |             |              |          |  |
| Engineer:                           | _          | 2-47          | Range         |                   | 18.000            |           |              | 20.000                      | 65.00       | 00 1.000     |          |  |
| Ahmed                               |            |               |               |                   |                   |           |              |                             |             |              | ¥        |  |
| Notes<br>1. The maximun             | n number   | of piles/shaf | ts in a range | is 100.           |                   |           |              |                             |             |              |          |  |

Pile Type = Driven

Unit Weight = 150pcf

Section Type = Concrete Square

Click-Insert Pile: Length = 45, Width = 18

Click – Cap. Report to view the Output

#### Driven Pile Capacity:

| Test<br>Pile<br>Length<br>(ft) | Pile<br>Width<br>(in) | Nominal<br>Skin<br>Friction<br>Resistance<br>(tons) | Nominal<br>Tip<br>Resistance<br>(tons) | Nominal<br>Resistance<br>(tons) | Design<br>Resistance<br>(tons) | Phi<br>Factor |
|--------------------------------|-----------------------|-----------------------------------------------------|----------------------------------------|---------------------------------|--------------------------------|---------------|
| 45.0                           | 18.0                  | 216.65                                              | 23.12                                  | 239.77                          | 112.69                         | 0.470         |

# 4.3 Drilled Shaft Examples

- 1. Clay Layer
- 2. Sand Overlaying Rock Layer

## 4.3.1 Shaft with Clay and Casing



Example 1 – Section1: Drilled Shaft

1- In the Opening Screen, Select: Units= English; Type= Drilled Shaft

2- In "Shaft Geometry", click "Insert Shaft" and introduce its parameters: Input= Single; Casing Length= 6ft; Length= 40ft; Diameter= 36in

| ) English<br>) Metric                     | Pile Typ<br>Drille     Drive | e<br>ed Shaft<br>en Pile | Shaf<br>Uni<br>Ec<br>Slu | t Material<br>: Weight (pcf):<br>ksi):<br>mp (in): |        | ?             | Ca<br>Ca<br>R9 | Capacity Calculation<br>Calculate capacity corresponding to R% (100 *Settlement/D):<br>R%: 0.000 |             |             |              |    |  |  |
|-------------------------------------------|------------------------------|--------------------------|--------------------------|----------------------------------------------------|--------|---------------|----------------|--------------------------------------------------------------------------------------------------|-------------|-------------|--------------|----|--|--|
| oject Information<br>roject Number:       |                              | Shaft Geom               | etry<br>Shaft            | Insert Ra                                          | nge    | Generate      | De             | lete Shafts                                                                                      | Capacity    | Report      | Capacity Plo | ot |  |  |
|                                           |                              | -<br>ID                  | Input                    | -<br>Casing Length                                 | Length | _<br>Diameter | Bell Length    | Bell Diameter                                                                                    | Min. Length | Max. Length | Increment    |    |  |  |
| ob Name:                                  | _                            |                          | Option                   | (ft)                                               | (ft)   | (in)          | (ft)           | (in)                                                                                             | (ft)        | (ft)        | (ft)         | -  |  |  |
|                                           |                              | 1                        | Single                   | 6.000                                              | 40.000 | 36.000        | 0.000          | 0.000                                                                                            |             |             |              |    |  |  |
| ater Table Elevatio<br>(ft)<br>-10000.000 | n                            |                          |                          |                                                    |        |               |                |                                                                                                  |             |             |              |    |  |  |
| 100001000                                 | _                            |                          |                          |                                                    |        |               |                |                                                                                                  |             |             |              |    |  |  |

Note: Because the Shaft does not include bell, its dimensions stay zero.

3- Select form the "Show" menu, Boring log or click the Boring Log icon in the Toolbar to open the Boring Log window.



4- In the Boring Log Screen, select: Ground Surface= 0.0ft; Cu Calculation Method= CPT

5- Click "Insert Layer" as many times as layers needed. Introduce soil parameters:

Soil Type=1 (Clay); Unit Weight=100 pcf; qc=16 tsf (for first layer); qc=30 tsf (for second and third layer)

Note: For this example, it is necessary to include three layers as the third layer marks the end of the second one described in the problem statement.

|                                                         |                                                                    |                                                     |                                                                                                                                       |                                                                          |                                                                               | Bo                                                             | oring Log                                      |                                                                                        |                                     |                                                                                                             |                |                 |           |          | × |
|---------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------|----------|---|
| Boring lo<br>Boring<br>Boring<br>Station<br>Offset:     | lentification<br>Date:<br>Number:<br>Number:                       |                                                     | 2                                                                                                                                     | Additional O<br>Ground Sur<br>Blow con<br>Correction                     | 0.000<br>ing automatic hammer<br>1.000<br>and Em                              |                                                                | (ft)                                           | Cu Calculation Method<br>Direct<br>CPT<br>Rock Side Friction Calculat<br>William's OMC |                                     | Srength Reduction Factor<br>Side friction (=< 1.0):<br>End bearing (=< 1.0):<br>tion Method<br>Vay's A qu^B |                | 1.000           |           | ]        |   |
| Boring D                                                | ata<br>ert Layer                                                   | Del                                                 | lete Layer Import/Ex                                                                                                                  | port                                                                     |                                                                               |                                                                |                                                |                                                                                        |                                     |                                                                                                             |                |                 |           |          |   |
| No.                                                     | Depth                                                              | Soil                                                | Soil                                                                                                                                  | N. Blows                                                                 | Unit Weight                                                                   | qc-CPT                                                         | qu                                             | qt                                                                                     | qb                                  | Em                                                                                                          | E100           | RQD Friction    | Socket    | Rock     | ~ |
|                                                         | (ft)                                                               | Туре                                                | Description                                                                                                                           | (blow/ft)                                                                | (pcf)                                                                         | (tsf)                                                          | (tsf)                                          | (tsf)                                                                                  | (tsf)                               | (ksi)                                                                                                       | (ksi)          | Modification    | Roughness | Recovery |   |
| 1                                                       | 0.000                                                              | 1                                                   | Plastic Clay                                                                                                                          |                                                                          | 100.000                                                                       | 16.000                                                         |                                                |                                                                                        |                                     |                                                                                                             |                |                 |           |          |   |
| 2                                                       | 20.000                                                             | 1                                                   | Plastic Clay                                                                                                                          |                                                                          | 100.000                                                                       | 30.000                                                         |                                                |                                                                                        |                                     |                                                                                                             |                |                 |           |          |   |
| 3                                                       | 60.000                                                             | 1                                                   | Plastic Clay                                                                                                                          |                                                                          | 100.000                                                                       | 30.000                                                         |                                                |                                                                                        |                                     |                                                                                                             |                |                 |           |          |   |
|                                                         |                                                                    |                                                     |                                                                                                                                       |                                                                          |                                                                               |                                                                |                                                |                                                                                        |                                     |                                                                                                             |                |                 |           |          | ~ |
| Notes<br>1. Soil T<br>2. Deptl<br>3. Soil D<br>4. Socke | ypes are as f<br>is are relative<br>lescription ar<br>et Roughness | ollows: 1.<br>e to grour<br>nd E100 ar<br>e: 0=Smoo | Plastic clay; 2. Clay and silty<br>nd surface elevation. The first<br>re not editable fields in the at<br>oth, 1=Rough. For Smooth so | sand; 3. Clean<br>layer must hav<br>pove table, and<br>pockets, the A qu | sand; 4. Limestor<br>ve a depth of 0.<br>I are NOT used ir<br>u^B method will | ne, very shell <u>i</u><br>the analysis.<br>be automatio<br>OK | y sand; 5. Vo<br>They are im<br>cally selected | id, final lay<br>ported fiel<br>I.<br>Cancel                                           | yer, no capacity.<br>Ids when using | the database,                                                                                               | , to help assi | gn a soil type. |           |          |   |

If instead of using CPT method to find the Undrain Shear Stress (Cu), it is used Direct Method, an average of the Cu for each layer is introduced in the Boring Log.

6- Click "Ok" to go back to the Main screen.

7- In the Main Screen click "Capacity Report" or in the "Show" menu and select "Shaft Capacity Report (Brief Report)".

Skin friction capacity -----Strength reduction factor for skin-friction = 1.00 Layer Top Ult Skin ID Elev. Thick. Friction Soil Type (ft) (ft) (Tons) 1 0.00 60.00 1- Plastic Clay <--- Bearing layer (\* IN LAYERS ABOVE BEARING LAYER) Ultimate skin friction in layers above bearing layer = 0.00(tons) Ultimate skin friction in bearing layer = 242.42(tons) Total Skin Friction = 242.42(tons) End bearing capacity ------Soil type of end bearing layer: 1- Plastic Clay Strength reduction factor for End-bearing = 1.00 ELEVATION UNIT E. B. (ft) (tsf) ------40.00 16.80 <-- Shaft tip elevation -49.00 16.53 <-- 3.0B below shaft tip Average unit end bearing above Shaft tip=16.87(tsf)Average unit end bearing below Shaft tip=16.67(tsf) Average unit end bearing in vicinity of Shaft tip = 16.77(tsf) Uncorrected mobilized end bearing capacity = 118.51(tons) Corrected mobilized end bearing capacity for wide shaft = 118.51(tons) Shaft Capacity -----For Probability of Failure, Pf = 0.1%, factor of safety equals 2.4 Ultimate Shaft capacity = 360.93(tons) Allowable Shaft Capacity (Factor of Safety = 2.4) = 150.39(tons)

a) For settlement of  $0.3'' \rightarrow R\% = 0.83\%$ 

8- In the Main Screen, introduce the value for R% to calculate the capacity corresponding to the allowable settlement.
| Jnits<br>English           | <ul> <li>Pile Ty</li> <li>Dril</li> </ul> | pe<br>led Shaft | Shaf<br>Unit | t Material<br>t Weight (pcf): |        | ?                 | ] Ca        | apacity Calculatio<br>alculate capacity | n<br>corresponding t | o R% (100 *Settle | ment/D):             |    |
|----------------------------|-------------------------------------------|-----------------|--------------|-------------------------------|--------|-------------------|-------------|-----------------------------------------|----------------------|-------------------|----------------------|----|
| ⊖ Metric                   | ⊖ Driv                                    | ven Pile        | Ec (         | ksi):<br>mp (in):             |        |                   | R           | %: 0.8                                  | 30                   |                   |                      |    |
| roject Informatio          | n [                                       | Shaft Geom      | etry         |                               |        |                   |             |                                         |                      |                   |                      |    |
| Project Number:            |                                           | <u>I</u> nsert  | Shaft        | In <u>s</u> ert Rar           | nge    | Ge <u>n</u> erate | <u>D</u> e  | elete Shafts                            | Capacity             | <u>R</u> eport    | Capacity <u>P</u> lo | ot |
|                            |                                           | ID              | Input        | Casing Length                 | Length | Diameter          | Bell Length | Bell Diameter                           | Min. Length          | Max. Length       | Increment            | ^  |
| lob Name:                  | _                                         |                 | Option       | (ft)                          | (ft)   | (in)              | (ft)        | (in)                                    | (ft)                 | (ft)              | (ft)                 |    |
|                            |                                           | 1               | Single       | 6.000                         | 40.000 | 36.000            | 0.000       | 0.000                                   |                      |                   |                      |    |
| Vater Table Elevat<br>(ft) | ion                                       |                 |              |                               |        |                   |             |                                         |                      |                   |                      |    |
| -10000.000                 |                                           |                 |              |                               |        |                   |             |                                         |                      |                   |                      | ~  |

9- Click in "Capacity Report" or in the "Show" tab and select "Shaft Capacity Report (Brief Report)."

```
User-Defined Settlement = 0.83%
Shaft capacity at user-defined settlement = 293.12(tons)
```

## 4.3.2 Sand overlying Rock (IGM)



1- In the Opening Screen, Select: Units= Metric; Type= Drilled Shaft

2- In "Shaft Geometry", click "Insert Shaft" and introduce its parameters: Input= Single; Casing Length= 2.0 m; Length=9.15 m; Diameter=1000mm

| <ul> <li>English</li> <li>Metric</li> </ul> | Pile Ty   | pe<br>led Shaft<br>ren Pile | Sha<br>Uni<br>Ec<br>Slu | ft Material<br>t Weight (pcf):<br>(ksi):<br>mp (in): | 0.000 0.000 0.000 |                   | Ci<br>Ci    | apacity Calculatio<br>alculate capacity<br>%: 0.00 | n<br>corresponding to<br>00 | o R% (100 *Settler | ment/D):             |   |
|---------------------------------------------|-----------|-----------------------------|-------------------------|------------------------------------------------------|-------------------|-------------------|-------------|----------------------------------------------------|-----------------------------|--------------------|----------------------|---|
| Project Information                         | on        | Shaft Geom                  | ietry                   |                                                      |                   |                   |             |                                                    |                             |                    |                      |   |
| Project Number:                             |           | <u>I</u> nsert              | Shaft                   | In <u>s</u> ert Ran                                  | ige               | Ge <u>n</u> erate | <u>D</u> e  | elete Shafts                                       | Capacity                    | Report             | Capacity <u>P</u> lo | t |
|                                             |           | ID                          | Input                   | Casing Length                                        | Length            | Diameter          | Bell Length | Bell Diameter                                      | Min. Length                 | Max. Length        | Increment            | ~ |
| Job Name:                                   | _         |                             | Option                  | (ft)                                                 | (ft)              | (in)              | (ft)        | (in)                                               | (ft)                        | (ft)               | (ft)                 |   |
|                                             |           | 1                           | Single                  | 6.560                                                | 30.000            | 39.360            | 0.000       | 0.000                                              |                             |                    |                      |   |
| Vater Table Eleva<br>(ft)<br>-10000.000     | tion      |                             |                         |                                                      |                   |                   |             |                                                    |                             |                    |                      |   |
| lotes                                       | number of | piles/shafts                | in a range i            | s 100.                                               |                   |                   |             |                                                    |                             |                    |                      |   |

Figure: 4.3.a Opening Screen

Note: Because the Shaft does not include bell, its dimensions stay zero.



Figure: 4.3.b Boring Log Toolbar

3- Select form the "Show" tab, Boring log or click the Boring Log icon in the Toolbar to open the Boring Log window.

4- In the Boring Log Screen, click "Insert Layer" as many times as layers needed. Introduce soil parameters:
-For the First Layer: 0.0m-6.1m
Soil Type=3 (Sand) N.Blows=10 Unit Weight=15.708 kN/m3
-For the Second Layer:20ft-60ft
Soil Type=4 (Limestone) Unit Weight=21.2 kN/m3 qu=1957.6 kPa qt=95.76 kPa
Socket Roughness= 1 (Rough)

5- Also, in the Boring Log select:

Ground Surface=0.0ft Rock Side Friction Calculation Method= McVay's

Note: Because clay is not part of the soil profile, the method for calculating Cu is not relevant.

| bring Identification<br>Boring Date<br>Boring Date<br>Boring Numbee:<br>Station Numbee:<br>Correction Factor:<br>Correction Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boring Identification       Additional Options       Cu Calculation Method       Srength Reduction Factor         Boring Date:       Ground Surface Elevation:       0.000       (rt)       Blow count is obtained using automatic hammer         Station Number:       Correction Factor:       1.000       CPT       End bearing (a< 1.0):       1.000         Offset:       ?       William's       McVay's       A qu'B         Boring Data       Crection factor:       1.000       William's       McVay's       A qu'B         No       Delete Layer       Import/Export       End bearing (as 1.0):       Sock Side Friction Calculation Method       William's       McVay's       A qu'B         No       Delete Layer       Import/Export       End End (str)       Kesi (str) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>В</th> <th>oring Log</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |                             |                                                                                                                |                                     |                                                        | В                              | oring Log                          |                               |                                                                 |                                    |                                                                 |                                                   |           |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------------|------------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|-----------|----------|
| Offset:       Import/Export         No.       Delete Layer       Import/Export         No.       Depth       Soil       Soil       N. Blows       Unit Weight       Cu-DIR       qu       qt       qb       Em       E100       RQD Friction       Socket       Rock         (ft)       Type       Description       (blow/ft)       (pcf)       (tsf)       (tsf)       (tsf)       (tsf)       (tsi)       Modification       Roughness       Recovery         1       0.000       3       Clean Sand       10.000       10.000       1.000       5.000       15.972       0.000       1       1.000         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       1.000       1       1.000         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       1.000       1       1.000         Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <th< th=""><th>Offset:       Import/Export         No.       Depth       Soil       N. Blows       Unit Weight       Cu-DIR       qu       qt       qb       Em       E100       RQD Friction       Socket       Rc         1       0.000       3       Clean Sand       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000<th>oring lo<br/>Boring<br/>Boring<br/>Boring</th><th>lentification<br/>Date:<br/>Number:<br/>Number:</th><th></th><th></th><th>Additional Op<br/>Ground Surfa</th><th>tions<br/>ace Elevation:<br/>nt is obtained u<br/>actor:</th><th>0.000<br/>Ising automa<br/>1.000</th><th>atic hammer</th><th>(ft)</th><th>Cu Calculation<br/>Direct<br/>CPT<br/>Rock Side Frict<br/>William's</th><th>i Method<br/>ion Calculati<br/>• McV</th><th>Srength Re<br/>Side friction<br/>End bearing<br/>on Method<br/>av's</th><th>eduction Factor<br/>on (= &lt; 1.0):<br/>ng (= &lt; 1.0):</th><th>1.000</th><th></th></th></th<> | Offset:       Import/Export         No.       Depth       Soil       N. Blows       Unit Weight       Cu-DIR       qu       qt       qb       Em       E100       RQD Friction       Socket       Rc         1       0.000       3       Clean Sand       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000       100.000 <th>oring lo<br/>Boring<br/>Boring<br/>Boring</th> <th>lentification<br/>Date:<br/>Number:<br/>Number:</th> <th></th> <th></th> <th>Additional Op<br/>Ground Surfa</th> <th>tions<br/>ace Elevation:<br/>nt is obtained u<br/>actor:</th> <th>0.000<br/>Ising automa<br/>1.000</th> <th>atic hammer</th> <th>(ft)</th> <th>Cu Calculation<br/>Direct<br/>CPT<br/>Rock Side Frict<br/>William's</th> <th>i Method<br/>ion Calculati<br/>• McV</th> <th>Srength Re<br/>Side friction<br/>End bearing<br/>on Method<br/>av's</th> <th>eduction Factor<br/>on (= &lt; 1.0):<br/>ng (= &lt; 1.0):</th> <th>1.000</th> <th></th> | oring lo<br>Boring<br>Boring<br>Boring | lentification<br>Date:<br>Number:<br>Number:       |                             |                                                                                                                | Additional Op<br>Ground Surfa       | tions<br>ace Elevation:<br>nt is obtained u<br>actor:  | 0.000<br>Ising automa<br>1.000 | atic hammer                        | (ft)                          | Cu Calculation<br>Direct<br>CPT<br>Rock Side Frict<br>William's | i Method<br>ion Calculati<br>• McV | Srength Re<br>Side friction<br>End bearing<br>on Method<br>av's | eduction Factor<br>on (= < 1.0):<br>ng (= < 1.0): | 1.000     |          |
| No.       Depth       Soil       Soil       N. Blows       Unit Weight       Cu-DIR       qu       qt       qb       Em       E100       RQD Friction       Socket       Rock         (ft)       Type       Description       (blow/ft)       (pcf)       (tsf)       (tsf)       (tsf)       (tsf)       (ksi)       (ksi)       Modification       Roughness       Recovery         1       0.000       3       Clean Sand       10.000       100.000       -       a       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.       Depth       Soil       Soil       N. Blows       Unit Weight       Cu-DIR       qu       qt       qb       Em       E100       RQD Friction       Socket       Rc         1       0.000       3       Clean Sand       10.000       100.000       100.000       100.000       100.000       1.000       5.000       15.972       0.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oring D<br>Inse                        | ata<br>ert Layer                                   |                             | Delete Layer Import/Ex                                                                                         | port                                |                                                        |                                |                                    |                               |                                                                 |                                    |                                                                 |                                                   |           |          |
| (ft)TypeDescription(blow/ft)(pcf)(tsf)(tsf)(tsf)(tsf)(tsf)(tsf)(tsf)(tsf)(tsf)ModificationRecovery10.0003Clean Sand10.000100.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <th>(ft)         Type         Description         (blow/ft)         (pcf)         (tsf)         (tsf)</th> <th>No.</th> <th>Depth</th> <th>Soil</th> <th>Soil</th> <th>N. Blows</th> <th>Unit Weight</th> <th>Cu-DIR</th> <th>qu</th> <th>qt</th> <th>qb</th> <th>Em</th> <th>E100</th> <th>RQD Friction</th> <th>Socket</th> <th>Rock</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ft)         Type         Description         (blow/ft)         (pcf)         (tsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.                                    | Depth                                              | Soil                        | Soil                                                                                                           | N. Blows                            | Unit Weight                                            | Cu-DIR                         | qu                                 | qt                            | qb                                                              | Em                                 | E100                                                            | RQD Friction                                      | Socket    | Rock     |
| 1       0.000       3       Clean Sand       10.000       100.000       Image: clean Sand Sand Sand Sand Sand Sand Sand Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       0.000       3       Clean Sand       100.000       100.000       100.000       100.000       5.000       15.972       0.000       1.000       1         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         Very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         Very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         Very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         Very shelly sand; 5.       Very shelly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | (ft)                                               | Туре                        | Description                                                                                                    | (blow/ft)                           | (pcf)                                                  | (tsf)                          | (tsf)                              | (tsf)                         | (tsf)                                                           | (ksi)                              | (ksi)                                                           | Modification                                      | Roughness | Recovery |
| 2       20.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1       1.000         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1       1.000         Solid Subscription and El00 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2       20.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      | 0.000                                              | 3                           | Clean Sand                                                                                                     | 10.000                              | 100.000                                                |                                |                                    |                               |                                                                 |                                    |                                                                 |                                                   |           |          |
| 3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       15.972       0.000       1.000       1.000         1         A state of the state o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       60.000       4       Limestone, very shelly sand       135.000       10.000       1.000       5.000       15.972       0.000       1.000       1         tes         Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.         Depths are relative to ground surface elevation. The first layer must have a depth of 0.         Soil Description and E10 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.         Socket Roughness: 0=Smooth, 1=Rough. For Smooth sockets, the A qu'B method will be automatically selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                      | 20.000                                             | 4                           | Limestone, very shelly sand                                                                                    |                                     | 135.000                                                |                                | 10.000                             | 1.000                         | 5.000                                                           | 15.972                             | 0.000                                                           | 1.000                                             | 1         | 1.000    |
| tes<br>Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.<br>Depths are relative to ground surface elevation. The first layer must have a depth of 0.<br>Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tes<br>Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.<br>Depths are relative to ground surface elevation. The first layer must have a depth of 0.<br>Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.<br>Socket Roughness: 0=Smooth, 1=Rough. For Smooth sockets, the A qu^B method will be automatically selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                      | 60.000                                             | 4                           | Limestone, very shelly sand                                                                                    |                                     | 135.000                                                |                                | 10.000                             | 1.000                         | 5.000                                                           | 15.972                             | 0.000                                                           | 1.000                                             | 1         | 1.000    |
| ites<br>Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.<br>Depths are relative to ground surface elevation. The first layer must have a depth of 0.<br>Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntes<br>Soil Types are as follows: 1. Plastic clay; 2. Clay and silty sand; 3. Clean sand; 4. Limestone, very shelly sand; 5. Void, final layer, no capacity.<br>Depths are relative to ground surface elevation. The first layer must have a depth of 0.<br>Soil Description and E100 are not editable fields in the above table, and are NOT used in the analysis. They are imported fields when using the database, to help assign a soil type.<br>Socket Roughness: 0=Smooth, 1=Rough. For Smooth sockets, the A qu^B method will be automatically selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |                             |                                                                                                                |                                     |                                                        |                                |                                    |                               |                                                                 |                                    |                                                                 |                                                   |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Socket Roughness: U=Smooth, T=Rough. For Smooth sockets, the A qu"B method will be automatically selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tes<br>Soil T<br>Depth<br>Soil D       | ypes are as fi<br>is are relative<br>escription ar | ollows<br>to gro<br>nd E100 | 1. Plastic clay; 2. Clay and silty<br>bund surface elevation. The first<br>D are not editable fields in the at | sand; 3. Clean s<br>layer must have | and; 4. Limestor<br>e a depth of 0.<br>are NOT used in | ne, very she<br>n the analysi  | lly sand; 5. Voi<br>s. They are im | d, final laye<br>ported field | r, no capacity.<br>Is when using t                              | he database,                       | to help assig                                                   | n a soil type.                                    |           |          |

Figure: 4.3.c Boring Log Window

6- If the default values are to be used, click the button labeled "Default qb, Em." This will autofill the qb and Em space with the next value:

qb= qu/2= 478.790 kPa; Em= 115(qu)= 110.122 MPa

7- Click "Ok" to go back to the Main screen.

8- In the Main Screen, now that the program recognizes that preset of a Rock layer, it is necessary to enter the "Shaft Material" parameters:

Unit Weight=20.4 kN/m3; Ec=27785.1 MPa; Slump=152.4 mm

| Units                                      | Pile Ty                  | pe         | Sha      | ft Material                | 125.000  |          | C           | apacity Calculatio | on          | - P% (100 *C-++) |              |    |
|--------------------------------------------|--------------------------|------------|----------|----------------------------|----------|----------|-------------|--------------------|-------------|------------------|--------------|----|
| English                                    | <ul> <li>Dril</li> </ul> | led Shaft  | Un<br>Ec | it weight (pct):<br>(ksi): | 4030.000 | )        | R           | %: 0.5             |             |                  | ment/DJ:     |    |
| ○ Metric                                   | ⊖ Driv                   | ven Pile   | Slu      | ımp (in):                  | 6.000    |          | K           |                    |             |                  |              |    |
| Project Information                        |                          | Shaft Geom | etry     |                            |          |          |             |                    |             |                  |              |    |
| Project Number:                            | - 11                     | Insert S   | Shaft    | Insert Ra                  | inge     | Generate | De          | elete Shafts       | Capacity    | Report           | Capacity Plo | ot |
|                                            |                          | ID         | Input    | Casing Length              | Length   | Diameter | Bell Length | Bell Diameter      | Min. Length | Max. Length      | Increment    | ~  |
| Job Name:                                  | -                        |            | Option   | (ft)                       | (ft)     | (in)     | (ft)        | (in)               | (ft)        | (ft)             | (ft)         |    |
|                                            |                          | 1          | Single   | 6.560                      | 30.000   | 39.360   | 0.000       | 0.000              |             |                  |              |    |
| Vater Table Elevatic<br>(ft)<br>-10000.000 | n                        |            |          |                            |          |          |             |                    |             |                  |              |    |
|                                            |                          | )          |          |                            |          |          |             |                    |             |                  |              |    |

Figure: 4.3.d Shaft Material

9- Click "Capacity Report" or in the "Show" tab and select "Shaft Capacity Report (Brief Report) or (Detailed Report)".

| Drilled | Shaft Capaci     | ty (sorted     | by shaft dia         | ameter):              |                    |      |
|---------|------------------|----------------|----------------------|-----------------------|--------------------|------|
|         |                  |                |                      |                       |                    |      |
| Streng  | gth reduction    | factors:       | Skin-frictio         | on = 1.00, End        | l-bearing =        | 1.00 |
| ID      | Diameter<br>(in) | Length<br>(ft) | Skin Fric.<br>(tons) | End Bearing<br>(tons) | Capacity<br>(tons) |      |
| 1       | 39.36            | 30.00          | 223.790              | 42.248                | 266.038            |      |

10- In the Main Screen, introduce the value for R% to calculate the capacity corresponding to the allowable settlement.

|                    | Pile Ty | pe          | Shaf   | t Material      | 425.000  |          | C           | apacity Calculatio | n .             | D0/ (100 *C)      |              |    |
|--------------------|---------|-------------|--------|-----------------|----------|----------|-------------|--------------------|-----------------|-------------------|--------------|----|
| English            | Oril    | led Shaft   | Uni    | t Weight (pcf): | 4030.000 |          | C C         | alculate capacity  | corresponding t | o R% (100 ^Settle | ment/D):     |    |
| ○ Metric           | ⊖ Driv  | ven Pile    | Slu    | mp (in):        | 6.000    |          |             | 0.5                |                 |                   |              |    |
| roject Informatio  | n       | Shaft Geome | try    |                 |          |          |             |                    |                 |                   |              |    |
| Project Number:    | _       | Insert S    | haft   | Insert Ra       | nge      | Generate | D           | elete Shafts       | Capacity        | Report            | Capacity Plo | ot |
|                    |         | ID          | Input  | Casing Length   | Length   | Diameter | Bell Length | Bell Diameter      | Min. Length     | Max. Length       | Increment    | 1  |
| Job Name:          | - 11    |             | Option | (ft)            | (ft)     | (in)     | (ft)        | (in)               | (ft)            | (ft)              | (ft)         |    |
| Engineer:          |         |             |        |                 |          |          |             |                    |                 |                   |              |    |
| /ater Table Elevat | ion     |             |        |                 |          |          |             |                    |                 |                   |              |    |
| (ft)               |         |             |        |                 |          |          |             |                    |                 |                   |              |    |
| (ft)<br>-10000.000 |         |             |        |                 |          |          |             |                    |                 |                   |              |    |

Figure: 4.3.e Settlement Capacity Calculation

11- Click in "Capacity Report" or in the "Show" tab and select "Shaft Capacity Report (Brief Report) or (Detailed Report)".

b) For settlement of 5.0mm  $\rightarrow$  R%= 0.5%

User-Defined Settlement = 0.50%

| ID | Diameter | Length | Skin Fric. | End Bearing | Capacity |
|----|----------|--------|------------|-------------|----------|
|    | (in)     | (ft)   | (tons)     | (tons)      | (tons)   |
| 1  | 39.36    | 30.00  | 148.023    | 37.437      | 185.460  |

# **5 License Installation**

- 1. Licensing
- 2. License File
- 3. License Installation Help
- 4. Standalone Workstation
- 5. Update on Network Server
- 6. Transfer License

# 5.1 Licensing

FB-Deep offers the following four licensing types:

- 1. SPT Analysis
- 2. SPT Analysis and CPT Analysis
- 3. SPT Analysis with Database Capability
- 4. SPT Analysis and CPT Analysis, with Database Capability

Depending on the license type purchased, certain features will be enabled/disabled. Multiple license types can be purchased on the same network license. In this instance, when FB-Deep is run from a workstation, the user is prompted to choose the license type for the current program run. For example, suppose a network license contains two seats, one of which is an SPT Analysis (type 1), and the other is SPT Analysis with Database Capability (type 3). When the type 1 license is being used, only the type 3 license would be simultaneously available.

## 5.2 License File

FB-Deep operates using a license file to determine its status. All shipped versions run in Demo mode as the default. The program can be "unlocked" into various modes including full version, networked or standalone. This unlocking can be done by hand, through phone contact with the Bridge Software Institute (<u>http://bsi-web.ce.ufl.edu</u>) or automatically through an internet connection to the BSI web server.

The program requires a license file to be installed. This license file is linked to the computer on which it is installed.

NOTE: You must have administrator rights on Windows NT or Windows 2000 to install FB-Deep or the license file on a server.

The following describes the modes and processes required:

### **Stand-Alone**

A stand-alone or fixed license version is locked to run on a single machine and only that machine. The license file is installed on the individual machine.

### **Network Version**

A network version is a floating license version that allows a fixed number of machines to run the program at any one time. For example, a three-seat installation allows three computers to run the program at the same time. The program is actually installed on any number of machines. For example, you can install the program on 20 computers in your network. However, only three of the 20 can use the program at the same time.

This installation requires a network server that shares a directory with all the computers wishing to run FB-Deep. The shared directory is where the license file is installed. All client machines must have read and write permissions for the shared directory in order for the program to run.

There is a separate install program for installing the license file on the server.

If your network installation has multiple servers, you will need to purchase multiple server versions.

### Updating the license

Any installed version can have its permissions changed by entering encrypted numbers into the license file. This is done by choosing the Help->Update Software License option from the main menu. The update can be done by hand or automatically through the Internet.

### E-mail/Fax/Phone License Update

This option is for installations that do not have an Internet connection. To do this installation, call the BSI support number (check the web for the phone number) and you will be stepped through the process. Numbers from your computer need to be given to the BSI representative and we can Fax or E-mail the encoded numbers you will need to type into the program.

### **Internet License Update**

This option requires the computer on which you are installing the license file be connected to the Internet. Then, all numbers are communicated through the Internet and the license updated automatically. The computer can either be a stand-alone system or the network server for a multiple seat license.

### **Transfer License**

There is a built in function that allows you to transfer you license to another machine. This allows you to move the license file from your current server or workstation to a new machine.

### Troubleshooting

The license file (both for servers and individual workstations) is locked to a machine based on hardware components contained in the machine. If you change or modify your hardware (drives, motherboards etc) your installation may not function. To do this, you should first transfer the license, then modify your hardware, and then re-install the license on the machine.

Novell systems: Be sure that the directory where the license file is saved is accessible to any user. The user must have read, write, modify, erase and create rights for that directory.

## **5.3 FB-Deep License Installation Help**

Before updating the program license for the first time, the FB-Deep program will run in demo mode. While running in demo mode, the save option is disabled and the program execution is limited to 30 days. The reporting options are also limited to the first record, regardless of the number of records. After purchasing the program, these limitations can be removed by using the License Configuration Wizard.

To update the software license at any time, select Update Software License from the Help menu. Doing so brings up the License Configuration Wizard.

The initial License Configuration Wizard screen shows four options for updating the software license. The options are shown below:

| License Configuration Wizard |                                                        | × |
|------------------------------|--------------------------------------------------------|---|
| S)                           | Welcome to the FB-Deep License Configuration Wizard    |   |
|                              | Select one of the following operations                 |   |
|                              | Update a License on a Stand Alone Workstation          |   |
|                              | O Update a License on a Network Server                 |   |
|                              | Set Path for License File on a Stand Alone Workstation |   |
|                              | ○ Set Path for the License File on a Network Server    |   |
|                              | ◯ Transfer License to a Different Computer             |   |
|                              | Click Next to continue.                                |   |
|                              | < Back Next > Cancel Finish                            |   |

# 5.4 Update a License on a Standalone Workstation

This option is used for a single installation of the software that does not rely on network to run the program. A license of this type is individually purchased per machine.

Click the Next button to continue. The next screen presents two methods for updating the software license. The first method allows the user to update the license by phone/fax. The second method is the preferred method, which allows the user to update the software license via an Internet connection. This method is pre-ferred since it is completely automated, assuming that a user account has been established in advance and that the user can connect to the Bridge Software Institute (BSI) web server. The user account will be created when downloading the FB-Deep program.



FB-Deep utilizes a license file to determine the program configuration. This license file must be updated by one of the two methods. If neither option is feasible, please contact the BSI for assistance.

### License File Update by Phone/Fax

This option requires a phone call to the BSI. To update a license by phone/fax, select Update by Phone/Fax and click the next button to continue. The next screen shows a series of edit boxes for entering license data. The Session Code and Machine ID need to be given to the BSI representative. After validating the user's account information and status, the BSI representative will then supply the user with a series of numerical codes that will modify the configuration of the license file. If the numerical codes are entered correctly, the program will be unlocked and will run without any limitations. If any of the numerical codes are entered incorrectly, the wizard will prevent the user from advancing to the next screen.

Click Next after entering the numerical codes.

| License Configuration Wizard |                   |                                |                                             | $\times$ |
|------------------------------|-------------------|--------------------------------|---------------------------------------------|----------|
| S)                           | Processing Lice   | nse by Phone                   |                                             |          |
|                              | Contact the Bridg | e Software Institute to obtain | n the codes to update the software license. |          |
|                              | Session Code:     |                                |                                             |          |
|                              | Machine ID:       |                                |                                             |          |
|                              | Code 1:           | 0                              |                                             |          |
|                              | Code 2:           | 0                              |                                             |          |
|                              | Code 3:           | 0                              |                                             |          |
|                              | Code 4:           | 0                              |                                             |          |
|                              | Code 5:           | 0                              |                                             |          |
|                              | Code 6:           | 0                              |                                             |          |
|                              |                   |                                |                                             |          |
|                              | < Back            | Next > Cancel                  | Finish                                      |          |

The Update Complete screen will then be shown after successfully entering the numerical codes. In order to apply the changes to the program configuration, the FB-Deep program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state.

## 5.5 Set Client Path for a License File on a Network Server

This option is used by the network client computer after a server license file has been configured and successfully installed on the network server (see LicServe Wizard). When a floating network license is purchased, the limiting factor is the number of network seats. The FB-Deep program can be installed on any number of client machines, however, the number of clients that can run the program at one time is limited by the number of network seats purchased. In order for the client machine to run the program using this scenario the client must locate the license file that has already been installed on the network server. Once this path has been established it will be saved so that the client machine will automatically find the license file each time the program is run.



Click the Next button to continue. The next screen asks the user to browse to the license file path on the network server. The user can either type the path or preferably click the Browse button to locate the file. The license file is named "ShaftSpt97.If". Click the Browse button, locate the license file on the network server, and click Open to continue. You must browse through the network to locate the license file. You can not use a mapped drive letter.

| License Configuration Wizard |                                                                                 | $\times$ |
|------------------------------|---------------------------------------------------------------------------------|----------|
| Ś                            | License File Path                                                               |          |
| KA                           | Click the Browse button to set the path for the license file on the Stand Alone |          |
|                              | Browse         Path:       C:\Users\Public\Documents\BSI\FB-Deep\FB-Deep.If     | ]        |
|                              |                                                                                 |          |
|                              | < Back Next > Cancel Finish                                                     |          |

Click Next after locating the license file on the network server. The Update Complete page is now shown. In order to apply the changes to the program configuration, the FB-Deep program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in an unlocked state.

| License Configuration Wizard |                                                                                                                            | × |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|---|
| S)                           | Update Complete                                                                                                            |   |
|                              | Click the Finish button to close this wizard. The application will then close automatically in order to apply the changes. |   |
|                              |                                                                                                                            |   |
|                              | < Back Next > Cancel Finish                                                                                                |   |

# 5.6 Update/Install a License on a Network Server

This option is used for a single installation of the software on a network server. This license update is identical to stand alone workstation update, except that the license is configured on the network server. This option would be used to run the program directly on the server to take advantage of the server hardware configuration (i.e. more memory, hard disk space, etc.). A license of this type is individually purchases per machine.

Select Update a License on a Network Server from the initial screen and follow the steps outline for Updating a License on a Stand Alone Workstation.

| License Configuration Wizard |                                                        | Х |
|------------------------------|--------------------------------------------------------|---|
| Ś                            | Welcome to the FB-Deep License Configuration Wizard    |   |
|                              | Select one of the following operations                 |   |
|                              | OUpdate a License on a Stand Alone Workstation         |   |
|                              | Update a License on a Network Server                   |   |
|                              | Set Path for License File on a Stand Alone Workstation |   |
|                              | Set Path for the License File on a Network Server      |   |
|                              | O Transfer License to a Different Computer             |   |
|                              | Click Next to continue.                                |   |
|                              |                                                        |   |
|                              | < Back Next > Cancel Finish                            |   |

# **5.7 Transfer License to a Different Computer**

This option is used to transfer a valid software license to another computer if the user no longer wishes to have the license on the current computer. Please note that selecting this option will invalidate the license file on the current machine. Also, this option is only valid for a stand along workstation installation of FB-Deep. Floating network installations are not applicable since the license is stored on the network server.

To proceed, select Transfer License to a Different Computer and click the Next button.

| License Configuration Wizard |                                                        | × |
|------------------------------|--------------------------------------------------------|---|
| S)                           | Welcome to the FB-Deep License Configuration Wizard    |   |
|                              | Select one of the following operations                 |   |
|                              | OUpdate a License on a Stand Alone Workstation         |   |
|                              | O Update a License on a Network Server                 |   |
|                              | Set Path for License File on a Stand Alone Workstation |   |
|                              | Set Path for the License File on a Network Server      |   |
|                              | Transfer License to a Different Computer               |   |
|                              | Click Next to continue.                                |   |
|                              |                                                        |   |
|                              | < Back Next > Cancel Finish                            |   |

Because this process can not be reversed, the user must check the box to confirm the remove the license from the current computer before proceeding. Doing so will enable the Next button. Click the Next button to remove the license.

| License Configuration Wizard |                                                                                                                                                                | × |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>N</b>                     | License Transfer                                                                                                                                               |   |
| KA                           | The license transfer wizard allows you to transfer a license from one computer to another.<br>This operation will disable the current license on this machine. |   |
|                              | Check to remove the license from the computer.                                                                                                                 |   |
|                              |                                                                                                                                                                |   |
|                              | < Back Next > Cancel Finish                                                                                                                                    |   |

The next screen informs the user that the license has been successfully removed. A verification code is displayed on the screen (and written to the file "LicRemoval.txt" in the application directory). This code must be given to a BSI representative in order to complete the license transfer process and activate the license on another computer.

| License Configuration Wizard |                                                                                                                                                                 | $\times$ |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>S</b>                     | Complete License Transfer                                                                                                                                       |          |
| K                            | The license has been successfully removed from this computer. Please contact the Bridge Software Institute to transfer the removed license to another computer. |          |
|                              | The verification code for this session                                                                                                                          |          |
|                              | This code must be supplied to the Bridge Software Institute to complete the license transfer.                                                                   |          |
|                              | Click Finish to continue.                                                                                                                                       |          |
|                              |                                                                                                                                                                 |          |
|                              | < Back Next > Cancel Finish                                                                                                                                     |          |

Click the Next button to continue. The Update Complete page is now shown. In order to apply the changes to the program configuration, the FB-Deep program needs to be restarted. Clicking the Finish button will update and automatically close the program. The program will now run in Demo mode.

#### References

Bernal, J.B., and Reese. L.C. "Study of the Lateral Pressure of Fresh Concrete as Related to the Design of Drilled Shafts", Research Report 308-1F, Center for Transportation Research, University of Texas, Austin, TX 1983

Carter, J.P., and Kulhawy, F.H., "Analysis and Design of Drilled Shaft Foundations Socketed into Rock", EPRI Report EL-5918, Electric Power Research Institute, Palo Alto, California, 1988.

Crapps, D.K., "Design, Construction & Inspection of Drilled Shafts in Limerock and Limestone", Annual Meeting of Florida Section ASCE, 1986.

Ellison, R.D., D'Appolinia, E., and Theirs, G.R., "Load-Deformation Mechanism for Bored Piles", Journal of Soil Mechanics, ASCE, Vol. 97, No. SM4, April 1971, pp. 661-678.

Engleing, D., Reese, L.C., "Behavior of Three Instrumented Drilled Shafts under Short Term Axial Loading", Research Report 176-3, Conducted at the Center for Highway Research, University of Texas, Austin TX, for FHWA and Texas Highway Department, May 1974, 116 Pages.

Gupton, C., and Logan T., "Design Guidelines for Drilled Shafts in Weak Rocks of South Florida", South Florida Annual ASCE Meeting, Miami, 1984.

Hobbs, N.B., and Healy, P.R., "Piling in Chalk", Doe and CIRIA Piling Development Group, PSA, London, 1979.

Horvath, R.G., and Kenney, T.C., "Shaft Resistance of Rock Socketed Drilled Piers", Symposium on Deep Foundations, ASCE National Convention, Atlanta, Georgia, 1979.

Hu, Z., Bloomquist, D., and McVay, M., "Updating Florida Department of Transportation's Pile/Shaft Design Procedures Based on CPT and DTP Data", Department of Civil and Coastal Engineering, University of Florida, 2007. McMahan, B., "Drilled Shaft Design and Construction in Florida", Department of Civil Engineering, University of Florida, Florida, 1988.

McVay, M.C., Townsend, F.C., and Williams, R.C., "Design of Socketed Drilled Shafts in Limestone", ASCE Journal of Geotechnical Engineering, Vol. 118, No. 10, pp. 1626-1637, 1992.

O'Neill, M.W., and Sheikh, S.A., "Geotechnical Behavior of Underreams in Pleistocene Clay, Drilled Piers and Caissons II, ASCE, May 1985 pp. 57-75.

O'Neill, M. W., Townsend, F.C., Hassan, K.M., Buller, A., and Chan, P.S., "Load Transfer for Drilled Shafts in Intermediate Geomaterials" FHWA - RD-95-172. 1996.

Owens, M.J. and Reese, L.C., "The Influence of a Steel Casing of the Axial Capacity of a Drilled Shaft" Research Report 255-1F, Report to the Texas State Highway Department, Center of Transportation Research, University of Texas, Austin, TX. July 1982, 204 pages.

Parra, F., Townsend, F.C., McVay, M.C., and Martinez, R.E., "Design Guidelines for Shaft Foundations, Final Report", submitted by the Department of Civil Engineering, University of Florida to the Florida Department of Transportation, July 1990.

Reese, L.C., and O'Neill, M.W., "Drilled Shafts: Construction and Procedures and Design Methods", Report No. FHWA-HI-88-042, Federal Highway Administration, 1988.

Reynolds, R.T., and Kaderabek, T.J., "Miami Limestone Foundation Design and Construction", ASCE, Florida Convention, Preprint No. 80-546, 1980.

Rowe, R.K., and Armitage, H.H., "A Design Method for Drilled Piers in Soft Rock", Canadian Geotechnical Journal, Vol. 24, 1987a.

Rowe, R.K., and Armitage, H.H., "Theoretical Solutions for Axial Deformation of Drilled Shafts in Rock", Canadian Geotechnical Journal, Vol. 24, 1987b.

Skempton, A.W., "The Bearing Capacity of Clay", Proceedings Bld. Research Congress, Div. I, Bld Res. Cong., London, 1951.

Williams, A.F., "Principles of Resistance Development in Rock Socketed Piles", Foundations on the Melbourne Mudstone - Rock Socketed Piles, Department of Civil Engineering, Monash University, Melbourne, Australia, February 1980.